Skip to main content
Log in

Joint distribution of inverses in matrix groups over finite fields

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We study the joint distribution of the solutions to the equation \(gh=x\) in \(G(\mathbb {F}_p)\) as \(p\rightarrow \infty \), for any fixed \(x\in G(\mathbb {Z})\), where \(G={\text {GL}}_n\), \({\text {SL}}_n\), \({\text {Sp}}_{2n}\) or \({\text {SO}}_{n}^\pm \). In the special linear case, this answers in particular a question raised by Hu and Li, and improves their error terms. Similar results are derived in certain subgroups, and when the entries of gh lie in fixed intervals. The latter shows for example the existence of \(g\in {\text {GL}}_n(\mathbb {F}_p)\) such that \(g,g^{-1}\) have all entries in \([0, c_np^{1-1/(2n^2+2)+\varepsilon }]\) for some absolute constant \(c_n>0\). The key for these results is to use Deligne’s extension of the Weil conjectures on a sheaf on G, along with the stratification theorem of Fouvry, Katz and Laumon, instead of reducing to bounds on classical Kloosterman sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In what follows, we let \({\text {SO}}_{n, I_n}\) be the special orthogonal group corresponding to the form given by the identity matrix \(I_n\): in other words, \({\text {SO}}_{n,I_n}(\mathbb {F}_p)\) is the special orthogonal group with square determinant, i.e. \({\text {SO}}_{n}(\mathbb {F}_p)\) if n is odd, and if n is even, \({\text {SO}}_{n}^\pm (\mathbb {F}_p)\) if \(p\equiv \pm 1\pmod {4}\) respectively.

  2. If G corresponded instead to the form \({\text {diag}}(\alpha ,1,\dots ,1)\), \(\alpha \ne 1\), this would be true only for the permutations fixing 1.

References

  1. Ahmadi, O., Shparlinski, I.E.: Distribution of matrices with restricted entries over finite fields. Indag. Math. (N.S.) 18(3), 327–337 (2007)

    Article  MathSciNet  Google Scholar 

  2. Aschbacher, M.: On the maximal subgroups of the finite classical groups. Invent. Math. 76(3), 469–514 (1984)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Gamburd, A., Sarnak, P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179(3), 559–644 (2010)

    Article  MathSciNet  Google Scholar 

  4. Sean Allen Broughton: A note on characters of algebraic groups. Proc. Am. Math. Soc. 89(1), 39–40 (1983)

    Article  MathSciNet  Google Scholar 

  5. Deligne, P.: Cohomologie étale, séminaire de géométrie algébrique du Bois-Marie SGA 4\(\frac{1}{2}\). Lecture Notes in Mathematics, vol. 569. Springer (1977)

  6. Deligne, P.: La conjecture de Weil. II. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 52(1), 137–252 (1980)

    Article  MathSciNet  Google Scholar 

  7. Drmota, M., Tichy, R.F.: Sequences, Discrepancies, and Applications. Lecture Notes in Mathematics, vol. 1651. Springer (1997)

  8. Ferguson, R., Hoffman, C., Luca, F., Ostafe, A., Shparlinski, I.E.: Some additive combinatorics problems in matrix rings. Rev. Mat. Complut. 23(2), 501–513 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fouvry, E., Katz, N.M.: A general stratification theorem for exponential sums, and applications. J. für die reine Angew. Math. 2001(504), 115–166 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Fouvry, É., Kowalski, E., Michel, P.: Algebraic twists of modular forms and Hecke orbits. Geom. Funct. Anal. 25(2), 580–657 (2015)

    Article  MathSciNet  Google Scholar 

  11. Fouvry, É.: Consequences of a result of N. Katz and G. Laumon concerning trigonometric sums. Israel J. Math. 120(1), 81–96 (2000)

    Article  MathSciNet  Google Scholar 

  12. Su, H., Li, Y.: Gauss sums over some matrix groups. J. Number Theory 132(12), 2967–2976 (2012)

    Article  MathSciNet  Google Scholar 

  13. Su, H., Li, Y.: On a uniformly distributed phenomenon in matrix groups. J. Number Theory 133(11), 3578–3588 (2013)

    Article  MathSciNet  Google Scholar 

  14. Katz, N.M.: Sums of Betti numbers in arbitrary characteristic. Finite Fields Appl. 7(1), 29–44 (2001)

    Article  MathSciNet  Google Scholar 

  15. Katz, N.M., Laumon, G.: Transformation de Fourier et majoration de sommes exponentielles. Inst. Hautes Études Sci. Publ. Math. 62, 361–418 (1985)

    Article  MathSciNet  Google Scholar 

  16. Shparlinski, I.E.: Modular hyperbolas. Jpn. J. Math. 7(2), 235–294 (2012)

    Article  MathSciNet  Google Scholar 

  17. Steele, J.M.: The Cauchy-Schwarz Master Class. MAA Problem Books Series. Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge (2004). (An introduction to the art of mathematical inequalities)

  18. Wilson, R.A.: The Finite Simple Groups, vol. 251 of Graduate Texts in Mathematics. Springer (2009)

  19. Xu, J.: Stratification for Multiplicative Character Sums. International Mathematics Research Notices (2018). rny096

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Perret-Gentil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perret-Gentil, C. Joint distribution of inverses in matrix groups over finite fields. Res. number theory 5, 37 (2019). https://doi.org/10.1007/s40993-019-0176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-019-0176-8

Mathematics Subject Classification

Navigation