Skip to main content
Log in

Kirwan surjectivity for quiver varieties

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For algebraic varieties defined by hyperkähler or, more generally, algebraic symplectic reduction, it is a long-standing question whether the “hyperkähler Kirwan map” on cohomology is surjective. We resolve this question in the affirmative for Nakajima quiver varieties. We also establish similar results for other cohomology theories and for the derived category. Our proofs use only classical topological and geometric arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We have in mind Grojnowski’s equivariant elliptic cohomology [9], since it seems to be the only theory currently documented; though the same arguments apply to any theory with standard formal properties.

  2. This is true when one of X, Y is a Nakajima quiver variety: Nakajima proves that the cohomology of a quiver variety is free abelian.

  3. This is, however, abstractly clear: the Chern classes are pulled back along the composite \(X\times \widetilde{Y}\rightarrow BGL({\text {rk}}({\mathcal E}_j^\ell ))\times BGL({\text {rk}}(\widetilde{{\mathcal F}}_j^\ell ))\xrightarrow {\otimes } BGL\big ({\text {rk}}({\mathcal E}_j^\ell ) \cdot {\text {rk}}(\widetilde{{\mathcal F}}_j^\ell )\big )\), hence are polynomials in the cohomology classes generating \(H^*\big (BGL({\text {rk}}({\mathcal E}_j^\ell ))\times BGL({\text {rk}}(\widetilde{{\mathcal F}}_j^\ell ))\big )\).

  4. We thank J. Weyman for help with references.

References

  1. Aganagic, M., Okounkov, A.: Elliptic stable envelope. arXiv:1604.00423

  2. Bellamy, G., Dodd, C., McGerty, K., Nevins, T.: Categorical cell decomposition of quantized symplectic algebraic varieties. Geom. Topol 21(5), 2601–2681 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berele, A., Regev, A.: Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crawley-Boevey, W.: Geometry of the moment map for representations of quivers. Compos. Math. 126(3), 257–293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser, Boston (2009)

    MATH  Google Scholar 

  6. Eisenbud, D., Weyman, J.: Fitting’s lemma for \(\mathbb{Z}/2\)-graded modules. Trans. Am. Math. Soc. 355(11), 4451–4473 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fisher, J., Rayan, S.: Hyperpolygons and Hitchin systems. Int. Math. Res. Not. 2016(6), 1839–1870 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  9. Grojnowski, I.: Delocalised equivariant elliptic cohomology. In: Elliptic Cohomology, London Math. Soc. Lecture Note Ser. vol. 342, pp. 114–121. Cambridge University Press, Cambridge (2007)

  10. Halpern-Leistner, D.: Remarks on Theta-stratifications and derived categories. arXiv:1502.03083

  11. Hudson, T.: A Thom-Porteous formula for connective K-theory using algebraic cobordism. J. K-Theory 14, 343–369 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jung, H.: Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)

    MathSciNet  MATH  Google Scholar 

  13. Kambayashi, T.: Automorphism group of a polynomial ring and algebraic group action on an affine space. J. Algebra 60(2), 439–451 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. King, A.: Moduli of representations of a finite-dimensional algebra. Q. J. Math. Oxford 45(2), 515–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kodera, R., Naoi, K.: Loewy series of Weyl modules and the Poincaré polynomials of quiver varieties. Publ. Res. Inst. Math. Sci. 48(3), 477–500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Markman, E.: Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces. Adv. Math. 208(2), 622–646 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. arXiv:1211.1287

  18. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14, 145–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shan, P., Varagnolo, M., Vasserot, E.: On the center of quiver-Hecke algebras. arXiv:1411.4392

  21. Shestakov, I., Umirbaev, U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17(1), 197–227 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vasserot, E.: Sur l’anneau de cohomologie du schéma de Hilbert de \({\mathbb{C}}^2\). C. R. Acad. Sci. Paris Sér. I Math. 332(1), 7–12 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Webster, B.: Centers of KLR algebras and cohomology rings of quiver varieties. arXiv:1504.04401

Download references

Acknowledgements

We thank G. Bellamy for comments on a draft. Kevin McGerty was supported by EPSRC Programme Grant EI/I033343/1. Thomas Nevins was supported by NSF Grants DMS-1159468 and DMS-1502125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nevins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGerty, K., Nevins, T. Kirwan surjectivity for quiver varieties. Invent. math. 212, 161–187 (2018). https://doi.org/10.1007/s00222-017-0765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-017-0765-x

Navigation