Skip to main content
Log in

Density and location of resonances for convex co-compact hyperbolic surfaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let \(X=\varGamma\backslash \mathbb {H}^{2}\) be a convex co-compact hyperbolic surface and let δ be the Hausdorff dimension of the limit set. Let Δ X be the hyperbolic Laplacian. We show that the density of resonances of the Laplacian Δ X in rectangles

$$\bigl\{ \sigma\leq \mathrm {Re}(s)\leq\delta,\ \big\vert \mathrm {Im}(s)\big\vert\leq T \bigr\} $$

is less than O(T 1+τ(σ)) in the limit T→∞, where τ(σ)<δ as long as \(\sigma>{\frac {\delta }{2}}\). This improves the previous fractal Weyl upper bound of Zworski (Invent. Math. 136(2):353–409, 1999) and goes in the direction of a conjecture stated in Jakobson and Naud (Geom. Funct. Anal. 22(2):352–368, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We recall that \(\mathcal{R}_{X}\) has at most finitely many points with \(\mathrm {Re}(s) \geq {\frac {1}{2}}\), the largest one being the simple eigenvalue at s=δ.

  2. “Trivial” or topological zeros of Z Γ (s) are located at s=−n, \(n\in \mathbb {N}_{0}\), with mutiplicities 2n+1, and correspond with multiplicities to the resonances of \(\mathbb {H}^{2}\). See Theorem 10.1 in [5] for a precise factorization of Z Γ (s).

  3. The main reason that forces us to perform this “small scale analysis” is the exponential blow-up of phases in the complex domain as |Im(s)|→∞, see Sect. 3, estimate (11).

  4. This identity follows from the orbit equivalence, Lemma 15.3 in [5].

  5. Convexity follows obviously from the variational formula above.

  6. It means that outside a disc of radius \(r_{0}<e^{P(\sigma_{0})}\), the spectrum is made of isolated eigenvalues of finite multiplicity, see [2] Chap. 1, for precise references.

  7. Which is simply obtained by repeated integration by parts in our case.

References

  1. Anantharaman, N.: Spectral deviations for the damped wave equation. Geom. Funct. Anal. 20(3), 593–626 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baladi, V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics, vol. 16. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  3. Baladi, V., Vallée, B.: Euclidean algorithm are Gaussian. J. Number Theory 110(2), 331–386 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barkofen, S., Weich, T., Potzuweit, A., Stöckmann, H.-J., Kuhl, U., Zworski, M.: Experimental observation of spectral gap in microwave n-disk systems. Arxiv preprint (2012)

  5. Borthwick, D.: Spectral Theory of Infinite-Area Hyperbolic Surfaces. Progress in Mathematics, vol. 256. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  6. Bourgain, J., Gamburd, A., Sarnak, P.: Generalization of Selberg’s 3/16 theorem and affine sieve. Acta Math. 207(2), 255–290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourgain, J., Kontorovich, A.: On representations of integers in thin subgroups of \({\rm SL}\sb{2}(\bold Z)\). Geom. Funct. Anal. 20(5), 1144–1174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bowen, R.: Hausdorff dimension of quasicircles. Inst. Hautes Études Sci. Publ. Math. 50, 11–25 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Button, J.: All Fuchsian Schottky groups are classical Schottky groups. In: The Epstein Birthday Schrift. Geom. Topol. Monogr., vol. 1, pp. 117–125. Geom. Topol. Publ., Coventry (1998) (Electronic)

    Google Scholar 

  10. Dal’bo, F.: Remarques sur le spectre des longueurs d’une surface et comptages. Bol. Soc. Bras. Math. 30, 199–221 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dolgopyat, D.: On decay of correlations in Anosov flows. Ann. Math. (2) 147(2), 357–390 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guillopé, L., Zworski, M.: Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Funct. Anal. 129(2), 364–389 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guillopé, L., Zworski, M.: Scattering asymptotics for Riemann surfaces. Ann. Math. (2) 145(3), 597–660 (1997)

    Article  MATH  Google Scholar 

  14. Guillopé, L., Zworski, M.: The wave trace for Riemann surfaces. Geom. Funct. Anal. 9(6), 1156–1168 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guillopé, L., Lin, K.K., Zworski, M.: The Selberg zeta function for convex co-compact Schottky groups. Commun. Math. Phys. 245(1), 149–176 (2004)

    Article  MATH  Google Scholar 

  16. Jakobson, D., Naud, F.: On the critical line of convex co-compact hyperbolic surfaces. Geom. Funct. Anal. 22(2), 352–368 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lax, P.D., Phillips, R.S.: Translation representation for automorphic solutions of the non-Euclidean wave equation I. Commun. Pure Appl. Math. 37, 303–328, (1984); II: 37, 779–813 (1984); III: 38, 179–208 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liverani, C.: On contact Anosov flows. Ann. Math. (2) 159(3), 1275–1312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lu, W., Sridhar, S., Zworski, M.: Fractal weyl laws for chaotic open systems. Phys. Rev. Lett. 91(15) (2003)

  20. Mazzeo, R.R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Naud, F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. Sci. École Norm. Super. (4) 38(1), 116–153 (2005)

    MATH  MathSciNet  Google Scholar 

  22. Nonnemacher, S.: Spectral problems in open chantum chaos. Nonlinearity 24 (2011)

  23. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990)

  24. Patterson, S.J.: The limit set of a Fuchsian group. Acta Math. 136(3–4), 241–273 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Patterson, S.J., Perry, P.A.: The divisor of Selberg’s zeta function for Kleinian groups. Duke Math. J. 106(2), 321–390 (2001). Appendix A by Charles Epstein

    Article  MATH  MathSciNet  Google Scholar 

  26. Pollicott, M.: Some applications of thermodynamic formalism to manifolds with constant negative curvature. Adv. Math. 85(2), 161–192 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Simon, B.: Trace Ideals and Their Applications. London Mathematical Society Lecture Note Series, vol. 35. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  28. Sjöstrand, J.: Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60(1), 1–57 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sjöstrand, J., Zworski, M.: Fractal upper bounds on the density of semiclassical resonances. Duke Math. J. 137(3), 381–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. 50, 171–202 (1979)

    Article  MATH  Google Scholar 

  31. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153(3–4), 259–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Clarendon/Oxford University Press, New York (1986). Edited and with a preface by D.R. Heath-Brown

    MATH  Google Scholar 

  33. Zworski, M.: Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 136(2), 353–409 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank both referees for valuable remarks that definitely helped to improve the readability of the paper. I wish to thank Colin Guillarmou, Stéphane Nonnenmacher and Maciej Zworski for their reading and comments. I also thank D. Jakobson for our collaboration which motivated this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Naud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naud, F. Density and location of resonances for convex co-compact hyperbolic surfaces. Invent. math. 195, 723–750 (2014). https://doi.org/10.1007/s00222-013-0463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0463-2

Keywords

Navigation