Skip to main content
Log in

Generalization of Selberg’s \( \frac{3}{{16}} \) theorem and affine sieve

  • Published:
Acta Mathematica

Abstract

An analogue of the well-known \( \frac{3}{{16}} \) lower bound for the first eigenvalue of the Laplacian for a congruence hyperbolic surface is proven for a congruence tower associated with any non-elementary subgroup L of SL(2,Z). The proof in the case that the Hausdorff of the limit set of L is bigger than \( \frac{1}{2} \) is based on a general result which allows one to transfer such bounds from a combinatorial version to this archimedian setting. In the case that delta is less than \( \frac{1}{2} \) we formulate and prove a somewhat weaker version of this phenomenon in terms of poles of the corresponding dynamical zeta function. These “spectral gaps” are then applied to sieving problems on orbits of such groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borthwick, D., Spectral Theory of Infinite-Area Hyperbolic Surfaces. Progress in Mathematics, 256. Birkhäuser, Boston, MA, 2007.

  2. Bourgain, J. & Gamburd, A., Uniform expansion bounds for Cayley graphs of SL2(Fp). Ann. of Math., 167 (2008), 625–642.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J., Gamburd, A. & Sarnak, P., Affine linear sieve, expanders, and sumproduct. Invent. Math., 179 (2010), 559–644.

    Article  MathSciNet  MATH  Google Scholar 

  4. Brooks, R., The spectral geometry of a tower of coverings. J. Differential Geom., 23 (1986), 97–107.

    MathSciNet  MATH  Google Scholar 

  5. Burger, M., Estimation de petites valeurs propres du laplacien d’un revêtement de variétés riemanniennes compactes. C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 191–194.

    MathSciNet  MATH  Google Scholar 

  6. Burger, M., Spectre du laplacien, graphes et topologie de Fell. Comment. Math. Helv., 63 (1988), 226–252.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dolgopyat, D., On decay of correlations in Anosov flows. Ann. of Math., 147 (1998), 357–390.

    Article  MathSciNet  MATH  Google Scholar 

  8. Frobenius, G., Über Gruppencharaktere, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, pp. 985–1021. 1896.

  9. Fuchs, E. & Sanden, K., Some experiments with integral Apollonian circle packings. Experiment. Math., 20 (2011), 380–399.

    Article  Google Scholar 

  10. Gamburd, A., On the spectral gap for infinite index “congruence” subgroups of SL2(Z). Israel J. Math., 127 (2002), 157–200.

    Article  MathSciNet  Google Scholar 

  11. Guillopé, L., Lin, K. K. & Zworski, M., The Selberg zeta function for convex cocompact Schottky groups. Comm. Math. Phys., 245 (2004), 149–176.

    Article  MathSciNet  MATH  Google Scholar 

  12. Halberstam, H. & Richert, H.-E., Sieve Methods. London Mathematical Society Monographs, 4. Academic Press, London–New York, 1974.

    Google Scholar 

  13. Iwaniec, H. & Kowalski, E., Analytic Number Theory. American Mathematical Society Colloquium Publications, 53. Amer. Math. Soc., Providence, RI, 2004.

  14. Kim, I., Counting, mixing and equidistribution of horospheres in geometrically finite rank one locally symmetric manifolds. Preprint, 2011. arXiv:1103.5003 [math.RT].

  15. Kontorovich, A. & Oh, H., Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Amer. Math. Soc., 24 (2011), 603–648.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lalley, S.P., Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits. Acta Math., 163 (1989), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lang, S. & Weil, A., Number of points of varieties in finite fields. Amer. J. Math., 76 (1954), 819–827.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lax, P. D. & Phillips, R. S., The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal., 46 (1982), 280–350.

    Article  MathSciNet  MATH  Google Scholar 

  19. Magee, M., Quantitative spectral gap for thin groups of hyperbolic isometries. Preprint, 2011. arXiv:1112.2004 [math.SP].

  20. Matthews, C. R., Vaserstein, L. N. & Weisfeiler, B., Congruence properties of Zariski-dense subgroups. I. Proc. Lond. Math. Soc., 48 (1984), 514–532.

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazzeo, R. R. & Melrose, R. B., Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal., 75 (1987), 260–310.

    Article  MathSciNet  MATH  Google Scholar 

  22. Naud, F., Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. Sc. Éc. Norm. Super., 38 (2005), 116–153.

    Article  MathSciNet  MATH  Google Scholar 

  23. Naud, F., Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces. Int. Math. Res. Not., 5 (2005), 299–310.

    Article  MathSciNet  Google Scholar 

  24. Parry, W. & Pollicott, M., Zeta functions and the periodic orbit structure of hyperbolic dynamics. Ast´erisque, 187–188 (1990), 268 pp.

  25. Patterson, S. J., The limit set of a Fuchsian group. Acta Math., 136 (1976), 241–273.

    Article  MathSciNet  MATH  Google Scholar 

  26. Patterson, S. J., On a lattice-point problem in hyperbolic space and related questions in spectral theory. Ark. Mat., 26 (1988), 167–172.

    Article  MathSciNet  MATH  Google Scholar 

  27. Patterson, S. J. & Perry, P. A., The divisor of Selberg’s zeta function for Kleinian groups. Duke Math. J., 106 (2001), 321–390.

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruelle, D., Thermodynamic Formalism. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  29. Sansuc, J.-J., Groupe de Brauer et arithm´etique des groupes alg´ebriques lin´eaires sur un corps de nombres. J. Reine Angew. Math., 327 (1981), 12–80.

    Article  MathSciNet  MATH  Google Scholar 

  30. Sarnak, P., Notes on the generalized Ramanujan conjectures, in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Clay Math. Proc., 4, pp. 659–685. Amer. Math. Soc., Providence, RI, 2005.

  31. Sarnak, P., Integral Apollonian packings. 2009 MAA Lecture. Available at http://www.math.princeton.edu/sarnak.

  32. Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc., 20 (1956), 47–87.

    MathSciNet  MATH  Google Scholar 

  33. Selberg, A., On the estimation of Fourier coefficients of modular forms, in Proc. Sympos. Pure Math., Vol. VIII, pp. 1–15. Amer. Math. Soc., Providence, RI, 1965.

  34. Series, C., The infinite word problem and limit sets in Fuchsian groups. Ergodic Theory Dynam. Systems, 1 (1981), 337–360.

    Article  MathSciNet  MATH  Google Scholar 

  35. Sullivan, D., Discrete conformal groups and measurable dynamics. Bull. Amer. Math. Soc., 6 (1982), 57–73.

    Article  MathSciNet  MATH  Google Scholar 

  36. Varjú, P., Expansion in SLd(O/I), I square-free. J. Eur. Math. Soc., 14 (2012), 273–305.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sarnak.

Additional information

Dedicated to the memory of Atle Selberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgain, J., Gamburd, A. & Sarnak, P. Generalization of Selberg’s \( \frac{3}{{16}} \) theorem and affine sieve. Acta Math 207, 255–290 (2011). https://doi.org/10.1007/s11511-012-0070-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-012-0070-x

Keywords

Navigation