Skip to main content
Log in

Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. We refer the reader to [14] for a beautiful collection of materials on the history of the isoperimetric problem.

  2. The condition that \(\operatorname {R}(x) - \operatorname {R}(-x) = O(|x|^{-n-1-\gamma})\) ensures that this limit exists. Cf. with the proof of Lemma F.1.

  3. If (M,g) is \(\mathcal {C}^{3}\)-asymptotic to Schwarzschild of mass m>0, we can derive the estimate \(|\nabla_{g} \mathring {h}|_{g} \leq c R^{-n-\gamma}\) using a maximum principle argument (the Bernstein trick, differentiating J. Simons’ identity), and argue as in the proof of [32, Proposition 2.1] to improve the right hand side of this estimate to R 2−nγ. This would improve the subsequent estimates and we could treat the cases n=3 and n≥4 in one step.

References

  1. Abedin, F., Corvino, J., Kapita, S., Wu, H.: On isoperimetric surfaces in general relativity. II. J. Geom. Phys. 59(11), 1453–1460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185(3), 339–353 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123–138 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beig, R., Murchadha, N.Ó.: The Poincaré group as the symmetry group of canonical general relativity. Ann. Phys. 174(2), 463–498 (1987)

    Article  MATH  Google Scholar 

  5. Benjamini, I., Cao, J.: A new isoperimetric comparison theorem for surfaces of variable curvature. Duke Math. J. 85(2), 359–396 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bray, H., Morgan, F.: An isoperimetric comparison theorem for Schwarzschild space and other manifolds. Proc. Am. Math. Soc. 130(5), 1467–1472 (2002) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bray, H.L.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature (thesis). arXiv:0902.3241v1 [math.DG] (1998)

  8. Brendle, S.: Hypersurfaces of constant mean curvature in deSitter-Schwarzschild space. Publ. Math. IHÉS (2011, to appear). arXiv:1105.4273 [math.DG]

  9. Brendle, S., Eichmair, M.: Isoperimetric and Weingarten surfaces in the Schwarzschild manifold. J. Differ. Geom., to appear. arXiv:1208.3988 [math.DG]

  10. Burago, Yu.D., Zalgaller, V.A.: Geometric inequalities. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285. Springer, Berlin (1988). Translated from the Russian by A.B. Sosinskiĭ, Springer Series in Soviet Mathematics

    MATH  Google Scholar 

  11. Cañete, A.: Stable and isoperimetric regions in rotationally symmetric tori with decreasing Gauss curvature. Indiana Univ. Math. J. 56(4), 1629–1659 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cañete, A., Ritoré, M.: The isoperimetric problem in complete annuli of revolution with increasing Gauss curvature. Proc. R. Soc. Edinb., Sect. A, Math. 138(5), 989–1003 (2008)

    Article  MATH  Google Scholar 

  13. Cicalese, M., Leonardi, G.P.: A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206(2), 617–643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. International Conference on the Isoperimetric Problem of Queen Dido and Its Mathematical Ramifications. http://math.arizona.edu/~dido/

  15. Corvino, J., Gerek, A., Greenberg, M., Krummel, B.: On isoperimetric surfaces in general relativity. Pac. J. Math. 231(1), 63–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Corvino, J., Wu, H.: On the center of mass of isolated systems. Class. Quantum Gravity 25(8), 085008, 18 (2008)

    Article  MathSciNet  Google Scholar 

  17. De Lellis, C., Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differ. Geom. 69(1), 75–110 (2005)

    MATH  Google Scholar 

  18. De Lellis, C., Müller, S.: A C 0 estimate for nearly umbilical surfaces. Calc. Var. Partial Differ. Equ. 26(3), 283–296 (2006)

    Article  MATH  Google Scholar 

  19. Druet, O.: Isoperimetric inequalities on compact manifolds. Geom. Dedic. 90, 217–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Druet, O.: Sharp local isoperimetric inequalities involving the scalar curvature. Proc. Am. Math. Soc. 130(8), 2351–2361 (2002) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eichmair, M., Metzger, J.: On large volume preserving stable CMC surfaces in initial data sets. J. Differ. Geom. 91(1), 81–102 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Eichmair, M., Metzger, J.: Large isoperimetric surfaces in initial data sets. J. Differ. Geom., to appear. arXiv:1102.2999 [math.DG]

  23. Fan, X.-Q., Shi, Y., Tam, L.-F.: Large-sphere and small-sphere limits of the Brown-York mass. Commun. Anal. Geom. 17(1), 37–72 (2009)

    Article  MathSciNet  Google Scholar 

  24. Fiala, F.: Le problème des isopérimètres sur les surfaces ouvertes à courbure positive. Comment. Math. Helv. 13, 293–346 (1941)

    Article  MathSciNet  Google Scholar 

  25. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. (2) 168(3), 941–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hsiang, W.-T., Hsiang, W.-Y.: On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces, I. Invent. Math. 98(1), 39–58 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, L.-H.: On the center of mass of isolated systems with general asymptotics. Class. Quantum Gravity 26(1), 015012, 25 (2009)

    Article  Google Scholar 

  29. Huang, L.-H.: Foliations by stable spheres with constant mean curvature for isolated systems with general asymptotics. Commun. Math. Phys. 300(2), 331–373 (2010)

    Article  MATH  Google Scholar 

  30. Huisken, G.: Personal communication

  31. Huisken, G.: An isoperimetric concept for mass and quasilocal mass. Oberwolfach Rep. 3(1), 87–88 (2006)

    Google Scholar 

  32. Huisken, G., Yau, S.-T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124(1–3), 281–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications. Classics in Applied Mathematics, vol. 31. SIAM, Philadelphia (2000). Reprint of the 1980 original

    Book  MATH  Google Scholar 

  34. Kleiner, B.: An isoperimetric comparison theorem. Invent. Math. 108(1), 37–47 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lee, D.A., Sormani, C.: Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds. J. Reine Angew. Math., to appear. arXiv:1104.2657 [math.DG]

  36. Ma, S.: A new result on the uniqueness of the CMC foliation in asymptotically flat manifold. arXiv:1207.0281 [math.DG]

  37. Ma, S.: Uniqueness of the foliation of constant mean curvature spheres in asymptotically flat 3-manifolds. Pac. J. Math. 252(1), 145–179 (2011)

    Article  MATH  Google Scholar 

  38. Metzger, J.: Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature. J. Differ. Geom. 77(2), 201–236 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Michael, J.H., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of ℝn. Commun. Pure Appl. Math. 26, 361–379 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  40. Morgan, F.: Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc. 355(12), 5041–5052 (2003) (electronic)

    Article  MATH  Google Scholar 

  41. Morgan, F., Hutchings, M., Howards, H.: The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature. Trans. Am. Math. Soc. 352(11), 4889–4909 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Morgan, F., Johnson, D.L.: Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49(3), 1017–1041 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nardulli, S.: The isoperimetric profile of a smooth Riemannian manifold for small volumes. Ann. Glob. Anal. Geom. 36(2), 111–131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Osserman, R.: The isoperimetric inequality. Bull. Am. Math. Soc. 84(6), 1182–1238 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Osserman, R.: Bonnesen-style isoperimetric inequalities. Am. Math. Mon. 86(1), 1–29 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pansu, P.: Sur la régularité du profil isopérimétrique des surfaces riemanniennes compactes. Ann. Inst. Fourier (Grenoble) 48(1), 247–264 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pedrosa, R.H.L.: The isoperimetric problem in spherical cylinders. Ann. Glob. Anal. Geom. 26(4), 333–354 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pedrosa, R.H.L., Ritoré, M.: Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems. Indiana Univ. Math. J. 48(4), 1357–1394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Qing, J., Tian, G.: On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds. J. Am. Math. Soc. 20(4), 1091–1110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286–318 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ritoré, M.: Applications of compactness results for harmonic maps to stable constant mean curvature surfaces. Math. Z. 226(3), 465–481 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ritoré, M.: Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Commun. Anal. Geom. 9(5), 1093–1138 (2001)

    MATH  Google Scholar 

  53. Ritoré, M.: The isoperimetric problem in complete surfaces of nonnegative curvature. J. Geom. Anal. 11(3), 509–517 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ritoré, M.: Optimal isoperimetric inequalities for three-dimensional Cartan-Hadamard manifolds, Global theory of minimal surfaces. In: Clay Math. Proc., vol. 2, pp. 395–404. Am. Math. Soc., Providence (2005)

    Google Scholar 

  55. Ritoré, M.: Geometric flows, isoperimetric inequalities and hyperbolic geometry, Mean curvature flow and isoperimetric inequalities. In: Adv. Courses Math. CRM Barcelona, pp. 45–113. Birkhäuser, Basel (2010)

    Google Scholar 

  56. Ritoré, M., Ros, A.: Stable constant mean curvature tori and the isoperimetric problem in three space forms. Comment. Math. Helv. 67(2), 293–305 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ritoré, M., Ros, A.: The spaces of index one minimal surfaces and stable constant mean curvature surfaces embedded in flat three manifolds. Trans. Am. Math. Soc. 348(1), 391–410 (1996)

    Article  MATH  Google Scholar 

  58. Ritoré, M., Rosales, C.: Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones. Trans. Am. Math. Soc. 356(11), 4601–4622 (2004) (electronic)

    Article  MATH  Google Scholar 

  59. Ros, A.: The isoperimetric problem. In: Global theory of minimal surfaces. Clay Math. Proc., vol. 2, pp. 175–209. Am. Math. Soc., Providence (2005)

    Google Scholar 

  60. Schoen, R., Simon, L., Yau, S.T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134(3–4), 275–288 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  61. Schoen, R., Yau, S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92(1), 47–71 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  62. Schoen, R., Yau, S.-T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge (1994). Lecture notes prepared by Ding, W.Y., Chang, K.C., Zhang, G.Q., Zhong, J.Q., Xu, Y.C., translated from the Chinese by Ding and S.Y. Cheng, Preface translated from the Chinese by K. Tso

    Google Scholar 

  63. Schoen, R., Yau, S.T.: Lectures on Harmonic Maps. Conference Proceedings and Lecture Notes in Geometry and Topology, vol. II. International Press, Cambridge (1997)

    MATH  Google Scholar 

  64. Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  65. Schulze, F.: Nonlinear evolution by mean curvature and isoperimetric inequalities. J. Differ. Geom. 79(2), 197–241 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Schwarz, H.A.: Gesammelte mathematische Abhandlungen, vols. I, II. Chelsea, Bronx (1972). Nachdruck in einem Band der Auflage von 1890

    Google Scholar 

  67. Simon, L.: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, vol. 3. Australian National University, Canberra (1983)

    MATH  Google Scholar 

  68. Topping, P.: Mean curvature flow and geometric inequalities. J. Reine Angew. Math. 503, 47–61 (1998)

    MathSciNet  MATH  Google Scholar 

  69. Topping, P.: The isoperimetric inequality on a surface. Manuscr. Math. 100(1), 23–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ye, R.: Foliation by constant mean curvature spheres. Pac. J. Math. 147(2), 381–396 (1991)

    Article  MATH  Google Scholar 

  71. Ye, R.: Constant mean curvature foliation: singularity structure and curvature estimate. Pac. J. Math. 174(2), 569–587 (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to Hubert Bray, Simon Brendle, Gerhard Huisken, Manuel Ritoré, Brian White, and Shing-Tung Yau for useful conversations, encouragement, and support. We also thank the referees for their careful reading and valuable comments. Michael Eichmair gratefully acknowledges the support of NSF grant DMS-0906038 and of SNF grant 2-77348-12. Also, Michael Eichmair wishes to express his sincere gratitude to Christina Buchmann, Katharina Halter, Madeleine Luethy, Alexandra Mandoki, Anna and Lisa Menet, Martine Verwey, Markus Weiss, and his wonderful colleagues in Group 6 at ETH for making him feel welcome and at home in Zürich right from the start.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Eichmair.

Appendices

Appendix A: Integral decay estimates

Our computations in this appendix take place in the part of an initial data set (M,g) that is diffeomorphic to ℝnB 1(0) and where

For Corollary A.3 we require in addition that for some γ∈(0,1],

(20)

i.e. that (M,g) is \(\mathcal {C}^{0}\)-asymptotic to Schwarzschild of mass m>0. The proofs of the statements in this appendix are straightforward extensions of those in [22, Appendix A] to higher dimensions, and we omit them.

Lemma A.1

Let (M,g) be an initial data set. Let ρ≥1 and let ΣM be a closed hypersurface such that \(\mathcal {H}^{n-1}_{g}(\varSigma \cap B_{r} \setminus B_{\rho}) \leq \varTheta r^{n-1}\) for all rρ. Then the estimate

holds for every p>(n−1).

Proof

The proof uses the co-area formula as in [64, p. 52]. □

Corollary A.2

Let (M,g) be an initial data set. For all ρ≥1 and γ∈(0,1] and every closed hypersurface ΣM with \(\mathcal {H}^{n-1}_{g}(\varSigma \cap B_{r} \setminus B_{\rho}) \leq \varTheta r^{n-1}\) for all rρ one has

for every β∈(0,n−2+γ).

Lemma A.3

Let (M,g) be an initial data set for which the decay assumptions (20) hold. There is a constant C′≥1 depending only on C such that for every ρ≥1 and every bounded measurable subset ΩM one has

for every α∈(1,n−1+γ).

Proof

The volume elements differ by terms O(r 2−nγ). □

Appendix B: Hawking-mass

Let g be a rotationally symmetric metric on \((a, b) \times \mathbb {S}^{n-1}\). Given r∈(a,b), let \(A = A(r) := \mathcal {H}^{n-1}_{g}(\{r\} \times \mathbb {S}^{n-1})\) denote the area of the coordinate sphere \(\{r\} \times \mathbb {S}^{n-1}\), and H=H(r) its (scalar) mean curvature, computed as the tangential divergence of the normal vector field in direction r . Define the function

$$ m (r) := \biggl(\frac{A}{\omega_{n-1}} \biggr)^{(n-2)/(n-1)} \biggl(1 - \frac{A^{2/(n-1)} H^2}{\omega_{n-1}^{2/(n-1)} (n-1)^2} \biggr). $$

This expression appears in different but equivalent form in [35, (13)]. It is constructed so as to evaluate to the mass on the centered spheres in the Schwarzschild metric. In particular, it restricts to the usual Hawking mass in dimension n=3.

Lemma B.1

(Cf. [35, Sect. 2])

Assume that the scalar curvature of g is non-negative, and that rA(r) is non-decreasing. Then m(r) is a non-decreasing function. If m=m(c)=m(d) for some c,d∈(a,b) with c<d, then \(([c, d] \times \mathbb {S}^{n-1}, g)\) is isometric through a rotationally invariant map to \((\{x \in \mathbb {R}^{n} : c' \leq |x| \leq d'\}, (1 + \frac{m}{2 |x|^{n-2}})^{\frac{4}{n-2}} \delta_{ij})\) for some 0<c′<dsuch that \(1 + \frac{m}{2 (c')^{n-2}} > 0\).

Appendix C: Standard formulae

We collect several basic facts from Riemannian geometry, for ease of reference and to set forth the sign conventions that are used throughout the paper.

We begin with our conventions for the Riemann curvature tensor. Let X,Y,Z,W be vector fields on a Riemannian manifold (M,g). Let ∇ denote the Levi-Civita connection associated with g. Then \(\operatorname {Rm}(X, Y, Z, W) = g(\nabla_{X} (\nabla_{Y} Z) - \nabla_{Y} (\nabla_{X} Z) - \nabla_{[X, Y]} Z, W)\). The Ricci curvature is given by \(\operatorname {Rc}(X, Y) := \text{trace}_{g} \operatorname {Rm}(\cdot, X, Y, \cdot)\). The scalar curvature is given by \(\operatorname {R}:= \text{trace}_{g} \operatorname {Rc}(\cdot, \cdot)\).

Lemma C.1

(Kulkarni–Nomizu product)

Let a ij ,b ij be two symmetric (0,2) tensors. Then the (0,4) tensor c ijkl :=(ab) ijkl =a jk b il +a il b jk a ik b jl a jl b ik has the symmetries of the Riemann curvature tensor, i.e. c ijkl =−c jikl and c ijkl =c klij . If (M,g) be a Riemannian manifold and if Rm is its Riemann curvature tensor, then \(\operatorname {Rm}= \frac{\overset{\circ}{ \operatorname {Rc}} \odot g}{n-2} + \frac{\operatorname {R}g \odot g}{2 n (n-1)} + W\), where \(\overset{\circ}{ \operatorname {Rc}}:= \operatorname {Rc}- \frac{\operatorname {R}}{n}g\) is the trace free part of the Ricci tensor, and where W is the Weyl curvature.

Lemma C.2

(Codazzi and Gauss equations)

Let Σ be a hypersurface in a Riemannian manifold (M,g), let pΣ, and let {e 1,…,e n−1,ν} be a local orthonormal frame of TM near p such that ν restricts to a unit normal vector field along Σ. We denote by \(\bar{g}_{ij} = g(e_{i}, e_{j})\) the induced metric on Σ, and by \(h_{ij} := g (\nabla_{e_{i}} \nu, e_{j})\) the components of the second fundamental form of Σ with respect to ν. Let \(\bar{g}^{ij} h_{ij} = H\) be the scalar mean curvature of Σ. Then \(\overline{\nabla}_{k} h_{ij} - \overline{\nabla}_{i} h_{kj} = \operatorname {Rm}_{k i \nu j}\), where \(\overline{\nabla}\) denotes covariant differentiation with respect to \(\overline{g}\). We have that \(\overline{\operatorname {Rm}}_{ijkl} = \operatorname {Rm}_{ijkl} + \,h_{il} h_{jk} - h_{ik} h_{jl}\).

Appendix D: The geometry of the spatial Schwarzschild metric

Consider the n-dimensional spatial Schwarzschild Riemannian manifold of mass m>0,

$$\Biggl(\mathbb {R}^n \setminus \{0\}, g_m := \biggl(1 + \frac{m}{2 r^{n-2}} \biggr)^{\frac{4}{n-2}} \sum_{i=1}^n d x_i^2 \Biggr), $$

where r=|x|. Given r>0, we will denote the centered coordinate sphere {x∈ℝn:|x|=r} in this coordinate system by S r . The sphere \(S_{r_{h}}\) with \(r_{h}= (\frac{m}{2} )^{1/(n-2)}\) is called the horizon. We record the following properties of this geometry; our sign conventions here are those of Appendix C.

  1. (a)

    The inversion \(x \to r_{h}^{2}\frac{x}{|x|^{2}}\) induces a reflection symmetry of g m across the horizon.

  2. (b)

    The g m -area of S r is \(\phi_{m}^{\frac{2(n-1)}{n-2}} r^{n-1} \omega_{n-1}\).

  3. (c)

    The g m -mean curvature with respect to the unit normal in direction of r of S r equals \(\phi_{m}^{-n/(n-2)}(1-\frac{m}{2r^{n-2}}) \frac{n-1}{r}\). The horizon \(S_{r_{h}}\) is a minimal surface, and the mean curvature of the spheres S r for r>r h is positive.

  4. (d)

    The conformal factor \(\phi_{m} := 1 + \frac{m}{2r^{n-2}}\) is harmonic with respect to the Euclidean metric \(\sum_{i=1}^{n} d x_{i}^{2}\). The scalar and the Weyl curvature of g m vanish.

  5. (e)
    $$\operatorname {Rc}_{g_m} = \frac{(n-2) m}{r^n \phi_m^{2n/(n-2)}}\bigl(g_m - n \phi_m^{4/(n-2)} dr \otimes dr \bigr). $$
  6. (f)
    $$\operatorname {Rm}_{g_m} = \frac{m}{r^n \phi_m^{2n/(n-2)}} \bigl( g_m \odot g_m - n \phi_m^{4/(n-2)} (dr \otimes dr) \odot g_m \bigr). $$

Appendix E: Regularity of isoperimetric regions and the behavior of minimizing sequences

The regularity of isoperimetric regions in complete Riemannian manifolds is that of area minimizing boundaries (see [40, 58, 59] and the references therein):

Proposition E.1

Let Ω be an isoperimetric region in (M,g). Its reduced boundary Ω is a smooth hypersurface away from a singular set of Hausdorff dimensionn−8.

The following technical lemma, which is needed to check the hypotheses of Theorem 3.5, follows from explicit comparison:

Lemma E.2

(Cf. [22, Lemma 4.3])

Let (M,g) be an initial data set. There exists a constant Θ>0 so that for every isoperimetric region Ω with \({\mathcal {L}}^{n}_{g}(\varOmega) \geq 1\) one has that \(\mathcal {H}^{n-1}_{g}(\partial \varOmega \cap B_{r}) \leq \varTheta r^{n-1}\) for all r≥1, and that \(\mathcal {H}^{n-1}_{g} (\partial \varOmega)^{\frac{1}{n-1}} {\mathcal {L}}^{n}_{g}(\varOmega)^{- \frac{1}{n}} \leq \varTheta\).

The following proposition characterizes the behavior of minimizing sequences for the isoperimetric problem (2) in initial data sets. It is a slight refinement of [58, Theorem 2.1]:

Proposition E.3

(Cf. [22, Proposition 4.2)]

Given V>0 there exists an isoperimetric region ΩM—which may be empty—and a sequence of coordinate balls B(p i ,r i ) with p i →∞ and 0≤r i r∈[0,∞) as i→∞ such that \({\mathcal {L}}^{n}_{g}(\varOmega) + {\mathcal {L}}^{n}_{g}(B(p_{i}, r_{i})) = V\) and such that \(\mathcal {H}^{n-1}_{g}(\partial \varOmega) + \mathcal {H}^{n-1}_{g}(\partial B(p_{i}, r_{i})) \to A_{g}(V)\). If r>0 and \({\mathcal {L}}^{n}_{g}(\varOmega) >0\), then the mean curvature of ∂Ω equals \(\frac{n-1}{r}\).

The following lemma is standard, cf. [22, Lemma 2.4].

Lemma E.4

Let (M,g) be an initial data set. There exists a constant C>0 depending only on (M,g) such that

$$ \biggl( \int_{ M} |f|^{\frac{n}{n-1}} d { \mathcal {L}}^n_{ g} \biggr)^{\frac{n-1}{n}} \leq C \int _{ M} |d f|_g d {\mathcal {L}}^n_{ g} \quad \text{\textit{for all} } f \in \mathcal {C}_c^1(M). $$

For any bounded Borel set ΩM with finite perimeter one has that

$$ {\mathcal {L}}^n_{ g} (\varOmega)^{\frac{n-1}{n}} \leq C \mathcal {H}^{n-1}_{ g}\bigl(\partial^* \varOmega\bigr). $$

Appendix F: An alternative expression for the center of mass

The following lemma is an extension of [29, Lemma 2.1]. Rather than applying a density theorem as in [29], our proof below relies on an elementary integration by parts, cf. the papers [36, 37] by S. Ma.

Lemma F.1

(Cf. [29, Lemma 2.1])

Let g ij be a metric onn that is \(\mathcal {C}^{2}\)-asymptotic to Schwarzschild of mass m>0 and asymptotically even at rate γ∈(0,1]. Then for all c>0 and γ 1∈(0,1] there exists c′>0 such that for all p∈ℝn with \(|p| \leq c r^{1-\gamma_{1}}\) and r≥1 we have that

Here, \(H^{S_{r}(p)}\) denotes the mean curvature of S r (p) with respect to g.

Proof

Throughout the proof we will sum over repeated indices. Let h ij :=g ij δ ij and let \(\rho = \frac{x-p}{|x-p|}\). Then

(21)

where E is an error term with |E(x)|≤c′|xp|3−2n, uniformly for p such that 2|p|≤r when r is large. This follows from a calculation exactly as in the case n=3, cf. [29, Lemma 2.1]. Moreover, we have that

(22)

We claim that for each l∈{1,…,n},

(23)

To see this, define the vector field X (l):=(x l p l )h ij ρ i j and note that

$$ \int_{S_r(p)} \operatorname{div}^{S_r(p)}_\delta X_{(l)} d \mathcal {H}^{n-1}_\delta = \int_{S_r(p)} H^{S_r(p)}_\delta \delta( X, \rho) d \mathcal {H}^{n-1}_\delta. $$

Using that \(H^{S_{r}(p)}_{\delta}= \frac{n-1}{r}\) and that

we obtain (23). Multiply (21) by (x l p l ) and integrate over S r (p). Using (23) we arrive at

(24)

Using (22) we see that the last term has order \(O(r^{3-n-\min\{\gamma,\gamma_{1}\}})\). To analyze the first term, let

$$ Y_{(l)} := \bigl(x_l( g_{ij,i} - g_{ii,j}) - (g_{jl} - g_{ii}\delta_{lj}) \bigr)\partial_j $$

so that

$$ \mathcal {C}_l = \frac{1}{2 m (n-1) \omega_{n-1}} \lim_{R\to\infty} \int _{S_R(0)} Y_{(l)}^j \frac{x_j}{R} d \mathcal {H}_\delta^{n-1}. $$

Note that \(\operatorname {div}_{\delta}Y_{(l)} = x^{l} (\operatorname {R}_{g} + \,\partial g * \partial g)\). It follows that \(| \operatorname {div}_{\delta}Y_{(l)} | \leq c r^{1-n-\gamma}\) and \(|\operatorname {div}_{\delta}Y_{(l)} (x) + \operatorname {div}_{\delta}Y_{(l)} (-x) | \leq c r^{-n-\gamma}\).

Let R>r+|p|. Then

(25)

Hence

(26)

where we have used the estimate for the odd part of \(\operatorname {div}_{\delta}Y_{(l)}\) in the first inequality, and the estimate for \(\operatorname {div}_{\delta}Y_{(l)}\) and that \({\mathcal {L}}^{n}_{\delta}(B_{r}(p) \setminus B_{r}(-p)) \leq c' r^{n-\gamma_{1}}\) in the second inequality. We emphasize that the right hand side is independent of R. Using the divergence theorem, we have that

(27)

Letting R→∞ in (27) we obtain

(28)

We claim that

(29)

To see this, define the vector field Y:=(h ij,i h ii,j ) j , note that \(\operatorname {div}_{\delta}Y = R_{g} + \partial g * \partial g = O(r^{-n-\gamma})\), and that

The lemma follows combining (24), (28) and (29). □

Appendix G: Appoximation by spheres

Lemma G.1

(Cf. [29, Lemma 4.8] and [32, Proposition 2.1])

There exist δ,c>0 depending only on n so that the following holds: Let Σ⊂ℝn be a closed hypersurface. If for some constant \(\bar{H} >0\) one has that \(\sup_{\varSigma} |\mathring {h}| + \sup_{\varSigma}|H - \bar{H}|\leq \delta \bar{H}\), then Σ is strictly convex, and there exist \(r \in (\frac{1}{2} \frac{n-1}{\bar{H}}, 2 \frac{n-1}{\bar{H}})\), p∈ℝn, and a function \(v \in \mathcal {C}^{2}(S_{r}(p))\) such that \(\varSigma = \{ x + v(x) \frac{x - p}{|x - p|} : x \in S_{r}(p)\}\) and

$$ \sup_{S_r(p)} r^{-1} |v| + |Dv| + r\big|D^2 v\big| \leq c r \Bigl(\sup_\varSigma |\mathring {h}| + \sup_\varSigma |H-\bar{H}|\Bigr). $$

Appendix H: Overview of results on isoperimetric regions

Our intention in this section is three-fold: First, to give a complete account of all closed Riemannian manifolds whose isoperimetric regions are fully or largely characterized; second, to describe briefly all techniques and developments in the theory of isoperimetry that appear to us relevant in the context of this paper; and third, to provide the reader with an introduction to the rich literature on this subject.

8.1 H.1 Monographs and surveys

R. Osserman’s article [44] surveys the classical literature on the isoperimetric problem. We point out in particular the discussion in Sect. 2, which highlights the difference between characterizing critical and stable critical surfaces for the isoperimetric problem and establishing a sharp isoperimetric inequality, as well as the discussion in Sect. 4 on results and conjectures related to the validity of the planar Euclidean isoperimetric inequality L 2−4πA≥0 on Riemannian surfaces with non-positive curvature. R. Osserman’s article [45] gives several effective (“Bonnesen-style”) isoperimetric inequalities on Riemannian surfaces. The proofs depend on the Gauss-Bonnet theorem and F. Fiala’s method of “interior parallels”, cf. the historical discussion in Sect. II. Section III.C contains some some extensions to higher dimension. The extensive monograph [10] by Y.D. Burago and V.A. Zalgaller emphasizes the rich connection with convex and integral geometry and contains many interesting historical references. The more recent survey articles [59] by A. Ros and [55] by M. Ritoré contain a wealth of additional material and up-to-date references.

8.2 H.2 Classical isoperimetric inequality

The sharp isoperimetric inequality in the simply connected constant curvature spaces \(\mathbb {R}^{n}, \mathbb{S}^{n}\), and ℍn have been established rigorously in all dimensions in a series of papers by E. Schmidt in the 1940’s, cf. the Historical Remarks 10.4 as well as Sects. 8–10 in [10]. The isoperimetric regions are exactly the geodesic balls.

8.3 H.3 The case of surfaces

The isoperimetric regions of certain rotationally symmetric surfaces have been completely characterized, using curve shortening flow [5, 68], parallel surfaces techniques [24, 46, 69], and by analysis of curves of constant geodesic curvature [11, 12, 41, 52]. The introduction of the recent article [12] by A. Cañete and M. Ritoré contains a thorough overview of these results.

M. Ritoré [53] has shown that solutions of the isoperimetric problem exist for every volume in complete Riemannian planes with non-negative curvature. Conversely, in [52], M. Ritoré gives examples of complete rotationally symmetric planes in which no optimizers for the isoperimetric problem exist for any volume.

8.4 H.4 Symmetrization techniques

We refer the reader to Sects. 1.3 and 3.2 in [59] and to Sect. 1.3 [55] for brief descriptions of the symmetrization techniques by J. Steiner and H. Schwarz [66] as well as W.-T. Hsiang and W.-Y. Hsiang [27].

In [27], W.-T. Hsiang and W.-Y. Hsiang apply their symmetrization technique to reduce the study of isoperimetric regions in ℝn×ℍm and in ℍm×ℍn to an ODE analysis of curves in the plane. In ℝ×ℍ2, the solutions are completely characterized.

R. Pedrosa and M. Ritoré [48] have characterized the isoperimetric domains of \(\mathbb {S}^{1} \times \mathbb {S}^{2}\) and \(\mathbb {S}^{1} \times \mathbb{H}^{2}\) as well as of \(\mathbb {S}^{1} \times \mathbb {R}^{n-1}\) when 3≤n≤8, using symmetrization as in [27] and ODE and stability analysis.

R. Pedrosa [47] has used spherical symmetrization as in [27] to show that the isoperimetric regions in \(\mathbb {R}\times \mathbb{S}^{n-1}\) are connected and smooth, and either topological balls or cylindrical of the form \((a,b)\times \mathbb{S}^{n-1}\). In \(\mathbb {R}\times \mathbb{S}^{2}\), the author has obtained an explicit description of the isoperimetric regions.

8.5 H.5 Small isoperimetric regions in Riemannian manifolds

D. Johnson and F. Morgan [42] have shown that isoperimetric regions of small volume in closed Riemannian manifolds are perturbations of small geodesic balls. An alternative argument that applies in dimension n=3 is given in Theorem 18 of [59]. For the relationship between small isoperimetric regions and scalar curvature we refer to the work of R. Ye [70], P. Pansu [46], O. Druet [19, 20], and S. Nardulli [43].

8.6 H.6 Classifying stable constant mean curvature surfaces

Using a particular choice of test function in the stability inequality, J.L. Barbosa, M. DoCarmo [2], and J.L. Barbosa, M. DoCarmo, and J. Eschenburg [3] have shown that in the simply connected space forms, every closed volume preserving stable constant mean curvature hypersurface is a geodesic sphere.

M. Ritoré and A. Ros [56] have characterized the isoperimetric regions in \(\mathbb {RP}^{3}\) and ℝ3/S θ , where S θ is a subgroup of O(3) generated by a translation or a screw motion, using the stability inequality in several different ways. In [57], the same authors characterize the isoperimetric regions of most products \(\mathbb{T}^{2} \times \mathbb {R}\) where \(\mathbb{T}^{2}\) is a flat 2-torus. (“Most” means all those from a compact subset in the non-compact moduli space of such manifolds.) A full characterization of the isoperimetric regions of T 2×ℝ, where T is a flat torus with injectivity radius 1 and area greater than a certain ϵ>0, has been given by M. Ritoré in [51].

8.7 H.7 Isoperimetric comparison

We point out the Levy-Gromov comparison theorem for the isoperimetric profile for closed Riemannian manifolds whose Ricci curvature is bounded below by that of the sphere, cf. Theorem 19 in [59]. B. Kleiner [34] has proven a sharp isoperimetric comparison result for three dimensional Hadamard manifolds. Alternative proofs of B. Kleiner’s result have been given by M. Ritoré [54] and by F. Schulze [65]; these proofs are surveyed in [55, Sects. 3.2 and 3.3].

H. Bray [7] has characterized the isoperimetric regions homologous to the horizon in the spatial Schwarzschild manifold. His method has been extended by H. Bray and F. Morgan [6] to general spherically symmetric manifolds satisfying certain conditions. J. Corvino, A. Gerek, M. Greenberg, and B. Krummel [15] have applied the methods of [6, 7] to characterize the isoperimetric regions in the spatial Reissner–Nordstrom and Schwarzschild anti de Sitter manifolds. In [9], S. Brendle and the first author use the results in [8, 22] to characterize the isoperimetric regions in the “doubled” Schwarzschild manifold, complementing the results of H. Bray in [7].

8.8 H.8 Effective isoperimetric inequalities

In [26], N. Fusco, F. Maggi, and A. Pratelli have given an effective isoperimetric inequality (“Bonnesen-style” as coined by R. Osserman [45]) for sets in ℝn. Their result is sharp in a sense that the authors make precise. Their proof is based on Schwarz-Steiner symmetrization. See also the paper [25] by A. Figalli, F. Maggi, and A. Pratelli and the paper [13] by M. Cicalese and P. Leonardi for alternative proofs based respectively on optimal transport and explicit minimization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichmair, M., Metzger, J. Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions. Invent. math. 194, 591–630 (2013). https://doi.org/10.1007/s00222-013-0452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0452-5

Keywords

Navigation