Skip to main content

Advertisement

Log in

Task-dependent modulation of inhibitory actions within the primary motor cortex

  • RESEARCH ARTICLE
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

 In 11 healthy subjects motor-evoked potentials (MEPs) and silent periods (SPs) were measured in the right first dorsal interosseus (FDI) and abductor pollicis brevis muscles (APB): (1) when transcranial magnetic cortex stimulation (TMS) was applied at tonic isometric contraction of 20% of maximum force, (2) when TMS was applied during tactile exploration of a small object in the hand, (3) when TMS was applied during visually guided goal-directed isometric ramp and hold finger flexion movements, and (4) when at tonic isometric contraction peripheral electrical stimulation (PES) of the median nerve was delivered at various intervals between PES and TMS. Of the natural motor tasks, duration of SPs of small hand muscles was longest during tactile exploration (APB 205±42 ms; FDI 213±47 ms). SP duration at tonic isometric contraction amounted to 172±35 ms in APB and 178±31 ms in FDI, respectively. SP duration in FDI was shortest when elicited during visually guided isometric finger movements (159±15 ms). At tonic isometric contraction, SP was shortened when PES was applied at latencies –30 to +70 ms in conjunction with TMS. The latter effect was most pronounced when PES was applied 20 ms before TMS. PES-induced effects increased with increasing stimulation strength up to a saturation level which appeared at the transition to painful stimulation strengths. Both isolated stimulation of muscle afferents and of low-threshold cutaneous afferents shortened SP duration. However, PES of the contralateral median nerve had no effect on SPs. Amplitudes of MEPs did not change significantly in any condition. Inhibitory control of motor output circuitries seems to be distinctly modulated by peripheral somatosensory and visual afferent information. We conclude that somatosensory information has privileged access to inhibitory interneuronal circuits within the primary motor cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 24 November 1997 / Accepted: 11 August 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, A., Kunesch, E., Classen, J. et al. Task-dependent modulation of inhibitory actions within the primary motor cortex. Exp Brain Res 124, 321–330 (1999). https://doi.org/10.1007/s002210050629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002210050629

Navigation