Skip to main content
Log in

Modulation of cutaneous reflexes by load receptor input during human walking

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To investigate the influence of load on the modulation of cutaneous reflexes, evoked by sural nerve stimulation, electromyographic activity in different leg muscles (tibialis anterior, gastrocnemius medialis (GM), biceps femoris, and soleus muscles (SO)) was recorded in healthy humans during treadmill walking with different body loads. Sural nerve stimulation was applied at two times perception threshold during different phases of the step cycle. Reflex amplitudes increased with body unloading and decreased with body loading. The reflex responses were not a simple function of the level of background activity. For example, in GM and SO, the largest reflex responses occurred during walking with body unloading, when background activity was de-creased. Hence, stable ground conditions (body loading) yielded smaller reflexes. It is proposed that load receptors are involved in the regulation of cutaneous reflex responses in order to adapt the locomotor pattern to the environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brooke JD, Cheng J, Collins DF, Mcllroy WE, Misiaszek JE, Staines WR (1997) Sensori-sensory afferent conditioning with leg movement: gain control in spinal reflex and ascending paths. Prog Neurobiol 51:393–421

    Article  PubMed  CAS  Google Scholar 

  • Clement G, Gurfinkel VS, Lestienne F, Lipshits MI, Popov KE (1984) Adaptation of postural control to weightlessness. Exp Brain Res 57:61–72

    Article  PubMed  CAS  Google Scholar 

  • Conway BA, Hultborn H, Kiehn O (1987) Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp Brain Res 68:643–656

    Article  PubMed  CAS  Google Scholar 

  • Danion F, Bonnard M, Pailhous J (1995) Joint-dependent mechanisms to adapt to an imbalance between flexion and extension forces in human gait. Neurosci Lett 187:185–188

    Article  PubMed  CAS  Google Scholar 

  • Danion F, Bonnard M, Pailhous J (1997) Intentional on-line control of propulsive forces in human gait. Exp Brain Res 116:525–538

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (1992) Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 72:33–69

    PubMed  CAS  Google Scholar 

  • Dietz V, Colombo G (1998) Influence of body load on the gait pat-tern in Parkinson’s disease. Mov Disord 13:255–261

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Gollhofer A, Kleiber M, Trippel M (1992) Regulation of bipedal stance: dependency on “load” receptors. Exp Brain Res 89:229–231

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Pearson KG (1980) Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res 187:321–332

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Trippel M, Horstmann GA, Dietz V (1990) Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82:351–358

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Tax AA, Doelen B van der, Trippel M, Dietz V (1991) Selective activation of human soleus or gastrocnemius in reflex responses during walking and running. Exp Brain Res 87:193–204

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Tax AA, Trippel M, Dietz V (1992) Phase-dependent reversal of reflexly induced movements during human gait. Exp Brain Res 90:404–414

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Tax AA, Trippel M, Dietz V (1993) Increased amplitude of cutaneous reflexes during human running as compared to standing. Brain Res 613:230–238

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Tax AA, Murrer L, Dietz V (1996) Backward and forward walking use different patterns of phase-dependent modulation of cutaneous reflexes in humans. J Neurophysiol 76:301–310

    PubMed  CAS  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80:83–133

    PubMed  CAS  Google Scholar 

  • Faist M, Dietz V, Pierrot-Deseilligny E (1996) Modulation, probably presynaptic in origin, of monosynaptic la excitation during human gait. Exp Brain Res 109:441–449

    Article  PubMed  CAS  Google Scholar 

  • Faist M, Blahak C, Duysens J, Berger W (1999) Modulation of the biceps femoris tendon jerk reflex during human locomotion. Exp Brain Res 125:265–270

    Article  PubMed  CAS  Google Scholar 

  • Finch L, Barbeau H, Arsenault B (1991) Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther 71:842–855

    PubMed  CAS  Google Scholar 

  • Fouad K, Pearson KG (1997) Effects of extensor muscle afferents on the timing of locomotor activity during walking in adult rats. Brain Res 749:320–328

    Article  PubMed  CAS  Google Scholar 

  • Ghori GM, Luckwill RG (1985) Responses of the lower limb to load carrying in walking man. Eur J Appl Physiol 54:145–150

    Article  CAS  Google Scholar 

  • Gossard JP, Brownstone RM, Barajon I, Hultborn H (1994) Trans-mission in a locomotor-related group Ib pathway from hind-limb extensor muscles in the cat. Exp Brain Res 98:213–228

    Article  PubMed  CAS  Google Scholar 

  • Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR (1997) Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol 77:797–811

    PubMed  CAS  Google Scholar 

  • Hiebert GW, Pearson KG (1999) Contribution of sensory feedback to the generation of extensor activity during walking in the de-cerebrate cat. J Neurophysiol 81:758–770

    PubMed  CAS  Google Scholar 

  • Hultborn H, Illert M, (1991) How is motor behaviour reflected in the organization of spinal systems? In: Humphrey DR (ed) Motor control: concepts and issues. Wiley, New York, pp 49–73

    Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    Article  PubMed  CAS  Google Scholar 

  • McCrea DA (1998) Neuronal basis of afferent-evoked enhancement of locomotor activity. Ann N Y Acad Sci 860:216–225

    Article  PubMed  CAS  Google Scholar 

  • Menard A, Leblond H, Gossard JP (1999) The modulation of pre-synaptic inhibition in single muscle primary afferents during fictive locomotion in the cat. J Neurosci 19:391–400

    PubMed  CAS  Google Scholar 

  • Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5:786–791

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG, Ramirez JM, Jiang W (1992) Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Exp Brain Res 90:557–566

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG, Misiaszek JE, Fouad K (1998) Enhancement and resetting of locomotor activity by muscle afferents. Ann N Y Acad Sci 860:203–215

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Decchi B (1994) Flexibility of lower limb reflex responses to painful cutaneous stimulation in standing humans: evidence of load-dependent modulation. J Physiol 481:521–532

    PubMed  CAS  Google Scholar 

  • Stein RB (1995) Presynaptic inhibition in humans. Prog Neurobiol 47:533–544

    Article  PubMed  CAS  Google Scholar 

  • Stephens MJ, Yang JF (1999) Loading during the stance phase of walking in humans increases the extensor EMG amplitude but does not change the duration of the step cycle. Exp Brain Res 124:363–370

    Article  PubMed  CAS  Google Scholar 

  • Tax AAM, Wezel BHM van, Dietz V (1995) Bipedal reflex coordination to tactile stimulation of the sural nerve during human running. J Neurophysiol 73:1947–1964

    PubMed  CAS  Google Scholar 

  • Van de Crommert HW, Faist M, Berger W, Duysens J (1996) Biceps femoris tendon jerk reflexes are enhanced at the end of the swing phase in humans. Brain Res 734:341–344

    Article  PubMed  Google Scholar 

  • Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiol 49:481–515

    Article  PubMed  CAS  Google Scholar 

  • Whelan PJ, Hiebert GW, Pearson KG (1995) Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp Brain Res 103:20–30

    Article  PubMed  CAS  Google Scholar 

  • Yang JF, Stein RB (1990) Phase-dependent reflex reversal in human leg muscles during walking. J Neurophysiol 63:1109–1117

    PubMed  CAS  Google Scholar 

  • Yang JF, Stephens MJ, Vishram R (1998) Transient disturbances to one limb produce coordinated, bilateral responses during infant stepping. J Neurophysiol 79:2329–2337

    PubMed  CAS  Google Scholar 

  • Zehr EP, Stein RB, Komiyama T (1998) Function of sural nerve reflexes during human walking. J Physiol 507:305–314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dietz.

Additional information

Published online: 15 August 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastiaanse, C.M., Duysens, J. & Dietz, V. Modulation of cutaneous reflexes by load receptor input during human walking. Exp Brain Res 135, 189–198 (2000). https://doi.org/10.1007/s002210000511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002210000511

Key words

Navigation