Skip to main content

Advertisement

Log in

Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Negative outcomes of mild traumatic brain injury (mTBI) can be exacerbated by repeated insult. Animal models of repeated closed-head mTBI provide the opportunity to define acute pathological mechanisms as the number of mTBI increases. Furthermore, little is known about the effects of mTBI impact site, and how this may affect brain function. We use a closed head, weight drop model of mTBI that allows head movement following impact, in adult female rats to determine the role of the number and location of mTBI on brain pathology and behaviour. Biomechanical assessment of two anatomically well-defined mTBI impact sites were used, anterior (bregma) and posterior (lambda). Location of the impact had no significant effect on impact forces (450 N), and the weight impact locations were on average 5.4 mm from the desired impact site. No between location vertical linear head kinematic differences were observed immediately following impact, however, in the 300 ms post-impact, significantly higher mean vertical head displacement and velocity were observed in the mTBI lambda trials. Breaches of the blood brain barrier were observed with three mTBI over bregma, associated with immunohistochemical indicators of damage. However, an increased incidence of hairline fractures of the skull and macroscopic haemorrhaging made bregma an unsuitable impact location to model repeated mTBI. Repeated mTBI over lambda did not cause skull fractures and were examined more comprehensively, with outcomes following one, two or three mTBI or sham, delivered at 1 day intervals, assessed on days 1–4. We observe a mild behavioural phenotype, with subtle deficits in cognitive function, associated with no identifiable neuroanatomical or inflammatory changes. However, an increase in lipid peroxidation in a subset of cortical neurons following two mTBI indicates increasing oxidative damage with repeated injury in female rats, supported by increased amyloid precursor protein immunoreactivity with three mTBI. This study of acute events following closed head mTBI identifies lipid peroxidation in neurons at the same time as cognitive deficits. Our study adds to existing literature, providing biomechanics data and demonstrating mild cognitive disturbances associated with diffuse injury, predominantly to grey matter, acutely following repeated mTBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angoa-Pérez M, Kane MJ, Briggs DI, Herrera-Mundo N, Viano DC, Kuhn DM (2014) Animal models of sports-related head injury: bridging the gap between pre-clinical research and clinical reality. 129:916–931. doi:10.1111/jnc.12690

    Article  CAS  Google Scholar 

  • Ansari MA, Roberts KN, Scheff SW (2008a) Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biol Med 45:443–452. doi:10.1016/j.freeradbiomed.2008.04.038

    Article  CAS  Google Scholar 

  • Ansari MA, Roberts KN, Scheff SW (2008b) A time course of contusion-induced oxidative stress and synaptic proteins in cortex in a rat model of TBI. J Neurotrauma 25:513–526. doi:10.1089/neu.2007.0451

    Article  PubMed  Google Scholar 

  • Bazarian JJ, Wong T, Harris M, Leahey N, Mookerjee S, Dombovy M (1999) Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain Inj 13:173–189

    Article  CAS  Google Scholar 

  • Bennett RE, Mac Donald CL, Brody DL (2012) Diffusion tensor imaging detects axonal injury in a mouse model of repetitive closed-skull traumatic brain injury. Neurosci Lett 513:160–165. doi:10.1016/j.neulet.2012.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder LM (1997) A review of mild head trauma. part II: clinical implications. J Clin Exp Neuropsychol 19:432–457. doi:10.1080/01688639708403871

    Article  CAS  PubMed  Google Scholar 

  • Bolouri H, Saljo A, Viano DC, Hamberger A (2012) Animal model for sport-related concussion; ICP and cognitive function. Acta Neurol Scand 125:241–247. doi:10.1111/j.1600-0404.2011.01614.x

    Article  CAS  PubMed  Google Scholar 

  • Bolton AN, Saatman KE (2014) Regional neurodegeneration and gliosis are amplified by mild traumatic brain injury repeated at 24-hour intervals. J Neuropathol Exp Neurol 73:933–947. doi:10.1097/NEN.0000000000000115

    Article  PubMed  PubMed Central  Google Scholar 

  • Broshek DK, Kaushik T, Freeman JR, Erlanger D, Webbe F, Barth JT (2005) Sex differences in outcome following sports-related concussion. J Neurosurg 102:856–863

    Article  Google Scholar 

  • Buchele F, Morawska MM, Schreglmann SR, Penner M, Muser M, Baumann CR, Noain D (2016) Novel rat model of weight drop-induced closed diffuse traumatic brain injury compatible with electrophysiological recordings of vigilance states. J Neurotrauma 33:1171–1180. doi:10.1089/neu.2015.4001

    Article  PubMed  Google Scholar 

  • Cassidy JD, Carroll LJ, Peloso PM, et al. (2004) Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 43(Suppl):28–60

    Article  Google Scholar 

  • Chen YUN, Constantini S, Trembovler V, Weinstock M, Shohami E (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 13:557–568. doi:10.1089/neu.1996.13.557

    Article  CAS  PubMed  Google Scholar 

  • Cornelius C, Crupi R, Calabrese V et al (2013) Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 19:836–853. doi:10.1089/ars.2012.4981

    Article  CAS  PubMed  Google Scholar 

  • Dewitt DS, Perez-Polo R, Hulsebosch CE, Dash PK, Robertson CS (2013) Challenges in the development of rodent models of mild traumatic brain injury. J Neurotrauma 30:688–701. doi:10.1089/neu.2012.2349

    Article  PubMed  Google Scholar 

  • Fehily B, Fitzgerald M (2016) Repeated mild traumatic brain injury: potential mechanisms of damage. Cell Transplant. doi:10.3727/096368916x692807

    Article  Google Scholar 

  • Fitzgerald M, Bartlett CA, Harvey AR, Dunlop SA (2010) Early events of secondary degeneration after partial optic nerve transection: an immunohistochemical study. J Neurotrauma 27:439–452. doi:10.1089/neu.2009.1112

    Article  PubMed  Google Scholar 

  • Fuss B, Mallon B, Phan T, Ohlemeyer C, Kirchhoff F, Nishiyama A, Macklin WB (2000) Purification and analysis of in vivo-differentiated oligodendrocytes expressing the green fluorescent protein. Developmental Biology 218:259–274. doi:10.1006/dbio.1999.9574

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Macklin W, Gerson J, Miller RH (2006) Intrinsic and extrinsic inhibition of oligodendrocyte development by rat retina. Developmental Biology 290:277–286. doi:10.1016/j.ydbio.2005.11.007

    Article  CAS  PubMed  Google Scholar 

  • Gregersen R, Christensen T, Lehrmann E, Diemer N, Finsen B (2001) Focal cerebral ischemia induces increased myelin basic protein and growth-associated protein-43 gene transcription in peri-infarct areas in the rat brain. Exp Brain Res 138:384–392. doi:10.1007/s002210100715

    Article  CAS  PubMed  Google Scholar 

  • Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Cantu RC, Randolph C, Jordan BD (2005) Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery 57:719–726. doi:10.1227/01.neu.0000175725.75780.dd

    Article  PubMed  Google Scholar 

  • Hall ED, Detloff MR, Johnson K, Kupina NC (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21:9–20. doi:10.1089/089771504772695904

    Article  PubMed  Google Scholar 

  • Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7:51–61. doi:10.1016/j.nurt.2009.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS, Nagley P (2010) Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimer’s Dis 20:453–473

    Article  Google Scholar 

  • Hohl A, da Silva Gullo J, Silva CCP et al (2012) Plasma levels of oxidative stress biomarkers and hospital mortality in severe head injury: a multivariate analysis. J Crit Care 27:523-e11

    Article  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol Brain Res 57:1–9. doi:10.1016/S0169-328x(98)00040-0

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Satou T, Nishida S, Tsubaki M, Imano M, Hashimoto S, Ito H (2010) Edaravone protects against apoptotic neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neurochem Res 35:348–355

    Article  CAS  Google Scholar 

  • Kane MJ, Angoa-Pérez M, Briggs DI, Viano DC, Kreipke CW, Kuhn DM (2012) A mouse model of human repetitive mild traumatic brain injury. J Neurosci Methods 203:41–49. doi:10.1016/j.jneumeth.2011.09.003

    Article  PubMed  Google Scholar 

  • Karr JE, Areshenkoff CN, Garcia-Barrera MA (2014) The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology 28:321–336. doi:10.1037/neu0000037

    Article  PubMed  Google Scholar 

  • Kozlowski P, Raj D, Liu J, Lam C, Yung AC, Tetzlaff W (2008) Characterizing white matter damage in rat spinal cord with quantitative MRI and histology. J Neurotrauma 25:653–676

    Article  Google Scholar 

  • Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM (2007) White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 130:2508–2519. doi:10.1093/brain/awm216

    Article  PubMed  Google Scholar 

  • Loane DJ, Byrnes KR (2010) Role of Microglia in Neurotrauma. Neurotherapeutics 7:366–377. doi:10.1016/j.nurt.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI (2014) Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 73:14–29

    Article  CAS  Google Scholar 

  • Longhi L, Saatman KE, Fujimoto S et al (2005) Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery 56:364–374 (discussion 364–374)

    Article  Google Scholar 

  • Luo J, Nguyen A, Villeda S et al (2014) Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Front Neurol 5:12. doi:10.3389/fneur.2014.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyeth BG, Jenkins LW, Hamm RJ et al (1990) Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res 526:249–258. doi:10.1016/0006-8993(90)91229-A

    Article  CAS  PubMed  Google Scholar 

  • Mannix R, Meehan WP, Mandeville J et al (2013) Clinical correlates in an experimental model of repetitive mild brain injury. Ann Neurol 74:65–75. doi:10.1002/ana.23858

    Article  PubMed  PubMed Central  Google Scholar 

  • Meehan WPI, Zhang J, Mannix R, Whalen MJ (2012) Increasing recovery time between injuries improves cognitive outcome after repetitive mild concussive brain injuries in mice. Neurosurgery 71:885–892. doi:10.1227/NEU.0b013e318265a439

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. doi:10.1016/0165-0270(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  • Mouzon B, Chaytow H, Crynen G et al (2012) Repetitive mild traumatic brain injury in a mouse model produces learning and memory deficits accompanied by histological changes. J Neurotrauma 29:2761–2773. doi:10.1089/neu.2012.2498

    Article  PubMed  Google Scholar 

  • Mouzon BC, Bachmeier C, Ferro A et al (2014) Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 75:241–254. doi:10.1002/ana.24064

    Article  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  • Mychasiuk R, Hehar H, Candy S, Ma I, Esser MJ (2016) The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes. J Neurosci Methods 257:168–178. doi:10.1016/j.jneumeth.2015.10.002

    Article  PubMed  Google Scholar 

  • O’Hare Doig RL, Bartlett CA, Maghzal GJ, Lam M, Archer M, Stocker R, Fitzgerald M (2014) Reactive species and oxidative stress in optic nerve vulnerable to secondary degeneration. Exp Neurol 261C:136–146. doi:10.1016/j.expneurol.2014.06.007

    Article  CAS  Google Scholar 

  • Payne SC, Bartlett CA, Savigni DL, Harvey AR, Dunlop SA, Fitzgerald M (2013) Early proliferation does not prevent the loss of oligodendrocyte progenitor cells during the chronic phase of secondary degeneration in a cns white matter tract. PLoS One. doi:10.1371/journal.pone.0065710

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellman EJ, Viano DC, Tucker AM, Casson IR (2003) Concussion in professional football: location and direction of helmet impacts—part 2. Neurosurgery 53:1328–1341

    Article  Google Scholar 

  • Pratico D, Reiss P, Tang LX, Sung S, Rokach J, McIntosh TK (2002) Local and systemic increase in lipid peroxidation after moderate experimental traumatic brain injury. J Neurochem 80:894–898

    Article  CAS  Google Scholar 

  • Psachoulia K, Jamen F, Young KM, Richardson WD (2009) Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biology 5:57–67. doi:10.1017/S1740925x09990354

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabadi MH, Jordan BD (2001) The cumulative effect of repetitive concussion in sports. Clin J Sport Med 11:194–198

    Article  CAS  Google Scholar 

  • Ramos-Zuniga R, Gonzalez-de La Torre M, Jimenez-Maldonado M et al (2014) Postconcussion syndrome and mild head injury: the role of early diagnosis using neuropsychological tests and functional magnetic resonance/spectroscopy. World Neurosurg 82:828–835. doi:10.1016/j.wneu.2013.09.018

    Article  PubMed  Google Scholar 

  • Roof RL, Hall ED (2000) Estrogen-related gender difference in survival rate and cortical blood flow after impact-acceleration head injury in rats. J Neurotrauma 17:1155–1169. doi:10.1089/neu.2000.17.1155

    Article  CAS  PubMed  Google Scholar 

  • Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD (2015) Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 9:385. doi:10.3389/fnins.2015.00385

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 283:15539–15543. doi:10.1074/jbc.R800001200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA, Dikranian K, Brody DL (2011) Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 70:551–567. doi:10.1097/NEN.0b013e31821f891f

    Article  PubMed  PubMed Central  Google Scholar 

  • Signoretti S, Vagnozzi R, Tavazzi B, Lazzarino G (2010) Biochemical and neurochemical sequelae following mild traumatic brain injury: summary of experimental data and clinical implications. Neurosurg Focus 29:1–12. doi:10.3171/2010.9.FOCUS10183

    Article  Google Scholar 

  • Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26:1407–1418. doi:10.1038/sj.jcbfm.9600297

    Article  CAS  PubMed  Google Scholar 

  • Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11:393–404. doi:10.1089/neu.1994.11.393

    Article  CAS  PubMed  Google Scholar 

  • Stahel PF, Shohami E, Younis FM et al (2000) Experimental closed head injury[colon] analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab 20:369–380

    Article  CAS  Google Scholar 

  • Szymanski CR, Chiha W, Morellini N et al (2013) Paranode abnormalities and oxidative stress in optic nerve vulnerable to secondary degeneration: modulation by 670 nm light treatment. PLoS One 8:e66448. doi:10.1371/journal.pone.0066448PONE-D-13-08628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavazzi B, Vagnozzi R, Signoretti S et al (2007) Temporal window of metabolic brain vulnerability to concussions: oxidative and nitrosative stresses– part II. Neurosurgery 61:390–396

    Article  Google Scholar 

  • Tyurin VA, Tyurina YY, Borisenko GG et al (2000) Oxidative stress following traumatic brain injury in rats. J Neurochem 75:2178–2189. doi:10.1046/j.1471-4159.2000.0752178.x

    Article  CAS  PubMed  Google Scholar 

  • Vagnozzi R, Tavazzi B, Signoretti S et al (2007) Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—part I. Neurosurgery 61:379–389. doi:10.1227/01.NEU.0000280002.41696.D8

    Article  PubMed  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 27:120–139. doi:10.1080/10590500902885684

    Article  CAS  Google Scholar 

  • Wells J, Kilburn MR, Shaw JA, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M (2012) Early in vivo changes in calcium ions, oxidative stress markers, and ion channel immunoreactivity following partial injury to the optic nerve. J Neurosci Res 90:606–618. doi:10.1002/jnr.22784

    Article  CAS  PubMed  Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9. doi:10.1093/bja/aem131

    Article  CAS  PubMed  Google Scholar 

  • Yamada KH, Kozlowski DA, Seidl SE et al (2012) Targeted gene inactivation of calpain-1 suppresses cortical degeneration due to traumatic brain injury and neuronal apoptosis induced by oxidative stress. J Biol Chem 287:13182–13193. doi:10.1074/jbc.M111.302612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QG, Laird MD, Han D et al (2012) Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS One 7:e34504. doi:10.1371/journal.pone.0034504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Department of Health Western Australia Merit Award. MF is supported by an NHMRC Career Development Fellowship (APP1087114). We thank Dr Caitlin Wyrwoll for kindly allowing us to use her ANY-Maze software and Dr Jeremy Smith for providing selected antibodies.

Disclosure statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda Fitzgerald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 6623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yates, N.J., Lydiard, S., Fehily, B. et al. Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons. Exp Brain Res 235, 2133–2149 (2017). https://doi.org/10.1007/s00221-017-4958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4958-8

Keywords

Navigation