Skip to main content
Log in

EEG frequency analysis of cortical brain activities induced by effect of light touch

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In human postural control, touching a fingertip to a stable object with a slight force (<1 N) reduces postural sway independent of mechanical support, which is referred to as the effect of light touch (LT effect). The LT effect is achieved by the spatial orientation according to haptic feedback acquired from an external spatial reference. However, the neural mechanism of the LT effect is incompletely understood. Therefore, the purpose of this study was to employ EEG frequency analysis to investigate the cortical brain activity associated with the LT effect when attentional focus was strictly controlled with the eyes closed during standing (i.e., control, fixed-point touch, sway-referenced touch, and only fingertip attention). We used EEG to measure low-alpha (about 8–10 Hz) and high-alpha rhythm (about 10–12 Hz) task-related power decrease/increase (TRPD/TRPI). The LT effect was apparent only when the subject acquired the stable external spatial reference (i.e., fixed-point touch). Furthermore, the LT-specific effect increased the high-alpha TRPD of two electrodes (C3, P3), which were mainly projected from cortical brain activities of the left primary sensorimotor cortex area and left posterior parietal cortex area. Furthermore, there was a negative correlation between the LT effect and increased TRPD of C3. In contrast, the LT effect correlated positively with increased TRPD of P3. These results suggest that central and parietal high-alpha TRPD of the contralateral hemisphere reflects the sensorimotor information processing and sensory integration for the LT effect. These novel findings reveal a partial contribution of a cortical neural mechanism for the LT effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, Babiloni F (1999) Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage 10:658–665

    Article  CAS  PubMed  Google Scholar 

  • Babiloni C, Del Percio C, Arendt-Nielsen L, Soricelli A, Romani GL, Rossini PM, Capotosto P (2014) Cortical EEG alpha rhythms reflect task-specific somatosensory and motor interactions in humans. Clin Neurophysiol 125:1936–1945

    Article  PubMed  Google Scholar 

  • Bastiaansen MC, Brunia CH (2001) Anticipatory attention: an event-related desynchronization approach. Int J Psychophysiol 43:91–107

    Article  CAS  PubMed  Google Scholar 

  • Bolton DA, McIlroy WE, Staines WR (2011) The impact of light fingertip touch on haptic cortical processing during a standing balance task. Exp Brain Res 212:279–291

    Article  PubMed  Google Scholar 

  • Bolton DA, Brown KE, McIlroy WE, Staines WR (2012) Transient inhibition of the dorsolateral prefrontal cortex disrupts somatosensory modulation during standing balance as measured by electroencephalography. NeuroReport 23:369–372

    Article  PubMed  Google Scholar 

  • Del Percio C, Brancucci A, Bergami F, Marzano N, Fiore A, Di Ciolo E, Aschieri P, Lino A, Vecchio F, Iacoboni M, Gallamini M, Babiloni C, Eusebi F (2007) Cortical alpha rhythms are correlated with body sway during static open-eyes standing in athletes: a high-resolution EEG study. Neuroimage 36:822–829

    Article  PubMed  Google Scholar 

  • Del Percio C, Babiloni C, Marzano N, Iacoboni M, Infarinato F, Vecchio F, Lizio R, Aschieri P, Fiore A, Toràn G, Gallamini M, Baratto M, Eusebi F (2009) “Neural efficiency” of athletes’ brain for upright standing: a high-resolution EEG study. Brain Res Bull 79:193–200

    Article  PubMed  Google Scholar 

  • Diener HC, Dichgans J, Guschlbauer B, Mau H (1984) The significance of proprioception on postural stabilization as assessed by ischemia. Brain Res 296:103–109

    Article  CAS  PubMed  Google Scholar 

  • Dijkerman HC, de Haan EH (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–239

    Article  PubMed  Google Scholar 

  • Edwards AS (1946) Body sway and vision. J Exp Psychol 36:526–535

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick R, Burke D, Gandevia SC (1994) Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol 478:363–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121:1513–1531

    Article  PubMed  Google Scholar 

  • Giacometti P, Perdue KL, Diamond SG (2014) Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain. J Neurosci Methods 229:84–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Holden M, Ventura J, Lackner JR (1994) Stabilization of posture by precision contact of the index finger. J Vestib Res 4:285–301

    CAS  PubMed  Google Scholar 

  • Horak FB (2006) Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 35(Suppl 2):ii7–ii11

    PubMed  Google Scholar 

  • Huang CY, Cherng RJ, Yang ZR, Chen YT, Hwang IS (2009) Modulation of soleus H reflex due to stance pattern and haptic stabilization of posture. J Electromyogr Kinesiol 19:492–499

    Article  PubMed  Google Scholar 

  • Iwamura Y (1998) Hierarchical somatosensory processing. Curr Opin Neurobiol 8:522–528

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ (1997) Light touch contact as a balance aid. Phys Ther 77:476–487

    CAS  PubMed  Google Scholar 

  • Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100:495–502

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Lackner JR (1995) The role of haptic cues from rough and slippery surfaces in human postural control. Exp Brain Res 103:267–276

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Schöner G, Dijkstra T, Ribeiro P, Lackner JR (1997) Coupling of fingertip somatosensory information to head and body sway. Exp Brain Res 113:475–483

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Oie K, Schöner G, Dijkstra T, Henson E (1998) Position and velocity coupling of postural sway to somatosensory drive. J Neurophysiol 79:1661–1674

    CAS  PubMed  Google Scholar 

  • Johannsen L, Lou SZ, Chen HY (2014) Effects and after-effects of voluntary intermittent light finger touch on body sway. Gait Posture 40:575–580

    Article  PubMed  Google Scholar 

  • Johannsen L, Hirschauer F, Stadler W, Hermsdörfer J (2015) Disruption of contralateral inferior parietal cortex by 1 Hz repetitive TMS modulates body sway following unpredictable removal of sway-related fingertip feedback. Neurosci Lett 586:13–18

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Kouzaki M, Masani K, Moritani T (2012) Unperceivable noise to active light touch effects on fast postural sway. Neurosci Lett 506:100–103

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W (1996) Memory processes, brain oscillations and EEG synchronization. Int J Psychophysiol 24:61–100

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J (1998) Induced alpha band power changes in the human EEG and attention. Neurosci Lett 244:73–76

    Article  CAS  PubMed  Google Scholar 

  • Koessler L, Maillard L, Benhadid A, Vignal JP, Felblinger J, Vespignani H, Braun M (2009) Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. Neuroimage 46:64–72

    Article  CAS  PubMed  Google Scholar 

  • Kouzaki M, Masani K (2008) Reduced postural sway during static standing by light touch is due to finger tactile feedback but not mechanical support. Exp Brain Res 188:153–158

    Article  PubMed  Google Scholar 

  • Krishnamoorthy V, Slijper H, Latash ML (2002) Effects of different types of light touch on postural sway. Exp Brain Res 147:71–79

    Article  PubMed  Google Scholar 

  • Magalhães FH, Kohn AF (2011) Vibratory noise to the fingertip enhances balance improvement associated with light touch. Exp Brain Res 209:139–151

    Article  PubMed  Google Scholar 

  • Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani L, Hallett M (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electroencephalogr Clin Neurophysiol 109:50–62

    Article  CAS  PubMed  Google Scholar 

  • Mauritz KH, Dietz V (1980) Characteristics of postural instability induced by ischemic blocking of leg afferents. Exp Brain Res 38:117–119

    Article  CAS  PubMed  Google Scholar 

  • McNevin NH, Wulf G (2002) Attentional focus on supra-postural tasks affects postural control. Hum Mov Sci 21:187–202

    Article  PubMed  Google Scholar 

  • Menz HB, Lord SR, Fitzpatrick RC (2006) A tactile stimulus applied to the leg improves postural stability in young, old and neuropathic subjects. Neurosci Lett 406:23–26

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Johnson BW (2004a) Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol 115:1760–1766

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Johnson BW (2004b) Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology 41:152–156

    Article  CAS  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Johnson BW, McNair NA (2004) Mu rhythm modulation during observation of an object-directed grasp. Brain Res Cogn Brain Res 19:195–201

    Article  PubMed  Google Scholar 

  • Neuper C, Pfurtscheller G (1996) Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neurosci Lett 216:17–20

    Article  CAS  PubMed  Google Scholar 

  • Neuper C, Pfurtscheller G (2001) Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol 43:41–58

    Article  CAS  PubMed  Google Scholar 

  • Neuper C, Wörtz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222

    Article  PubMed  Google Scholar 

  • Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, Oda I, Isobe S, Suzuki T, Kohyama K, Dan I (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21:99–111

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ, Black FO (1990–1991) Age-related changes in human posture control: sensory organization tests. J Vestib Res 1:73–85

  • Petrofsky JS, Khowailed IA (2014) Postural sway and motor control in trans-tibial amputees as assessed by electroencephalography during eight balance training tasks. Med Sci Monit 20:2695–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrofsky JS, Alshammari F, Lee H, Yim JE, Bains G, Khowailed IA, Deshpande PP, Potnis P, Tse F, Cavalcanti P (2012) Electroencephalography to assess motor control during balance tasks in people with diabetes. Diabetes Technol Ther 14:1068–1076

    Article  PubMed  Google Scholar 

  • Pfurtscheller G, Aranibar A (1979) Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46:138–146

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C (1994) Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett 174:93–96

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C (1997) Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 239:65–68

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103:642–651

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH (2006) Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31:153–159

    Article  CAS  PubMed  Google Scholar 

  • Rabin E, DiZio P, Lackner JR (2006) Time course of haptic stabilization of posture. Exp Brain Res 170:122–126

    Article  PubMed  Google Scholar 

  • Rabin E, DiZio P, Ventura J, Lackner JR (2008) Influences of arm proprioception and degrees of freedom on postural control with light touch feedback. J Neurophysiol 99:595–604

    Article  PubMed  Google Scholar 

  • Reginella RL, Redfern MS, Furman JM (1999) Postural sway with earth-fixed and body-referenced finger contact in young and older adults. J Vestib Res 9:103–109

    CAS  PubMed  Google Scholar 

  • Reynolds RF (2010) The ability to voluntarily control sway reflects the difficulty of the standing task. Gait Posture 31:78–81

    Article  PubMed  Google Scholar 

  • Riley MA, Stoffregen TA, Grocki MJ, Turvey MT (1999) Postural stabilization for the control of touching. Hum Mov Sci 18:795–817

    Article  Google Scholar 

  • Rogers MW, Wardman DL, Lord SR, Fitzpatrick RC (2001) Passive tactile sensory input improves stability during standing. Exp Brain Res 136:514–522

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Cao C, Jaiswal N, Newell KM (2009) Neural basis of postural instability identified by VTC and EEG. Exp Brain Res 199:1–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sozzi S, Do MC, Monti A, Schieppati M (2012) Sensorimotor integration during stance: processing time of active or passive addition or withdrawal of visual or haptic information. Neuroscience 212:59–76

    Article  CAS  PubMed  Google Scholar 

  • Stancák A (2006) Cortical oscillatory changes occurring during somatosensory and thermal stimulation. Prog Brain Res 159:237–252

    Article  PubMed  Google Scholar 

  • Tse YY, Petrofsky JS, Berk L, Daher N, Lohman E, Laymon MS, Cavalcanti P (2013) Postural sway and rhythmic electroencephalography analysis of cortical activation during eight balance training tasks. Med Sci Monit 19:175–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueta K, Okada Y, Nakano H, Osumi M, Morioka S (2014) Effects of voluntary and automatic control of center of pressure sway during static standing. J Mot Behav 25:1–9

    Google Scholar 

  • Vecchio F, Del Percio C, Marzano N, Fiore A, Toran G, Aschieri P, Gallamini M, Cabras J, Rossini PM, Babiloni C, Eusebi F (2008) Functional cortico-muscular coupling during upright standing in athletes and nonathletes: a coherence electroencephalographic-electromyographic study. Behav Neurosci 122:917–927

    Article  PubMed  Google Scholar 

  • Vérité F, Bachta W, Morel G (2014) Closed loop kinesthetic feedback for postural control rehabilitation. IEEE Trans Haptics 7:150–160

    Article  PubMed  Google Scholar 

  • Vuillerme N, Nafati G (2007) How attentional focus on body sway affects postural control during static standing. Psychol Res 71:192–200

    Article  PubMed  Google Scholar 

  • Vuillerme N, Isableu B, Nougier V (2006) Attentional demands associated with the use of a light fingertip touch for postural control during static standing. Exp Brain Res 169:232–236

    Article  PubMed  Google Scholar 

  • Wing AM, Johannsen L, Endo S (2011) Light touch for balance: influence of a time-varying external driving signal. Philos Trans R Soc Lond B Biol Sci 366:3133–3141

    Article  PubMed  PubMed Central  Google Scholar 

  • Wulf G, Mercer J, McNevin N, Guadagnoli MA (2004) Reciprocal influences of attentional focus on postural and suprapostural task performance. J Mot Behav 36:189–199

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the students of Kio University for their participation in this study. We would also like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Ishigaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Declaration of Helsinki (1964) and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishigaki, T., Ueta, K., Imai, R. et al. EEG frequency analysis of cortical brain activities induced by effect of light touch. Exp Brain Res 234, 1429–1440 (2016). https://doi.org/10.1007/s00221-015-4545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4545-9

Keywords

Navigation