Skip to main content
Log in

Vibratory noise to the fingertip enhances balance improvement associated with light touch

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject’s body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. It has been previously demonstrated that optimal configurations of the motion tracking system are able to produce measurements with precision and repeatability less than 1 μm (Schmidt et al. 2009). Nevertheless, additional measurements were performed (all with the subject touching the surface) with higher intensities of vibratory noise, so that measured displacements were within the resolution of the tracking system warranted by the manufacturer (100 μm). A linear relationship between the intensity of the noise signals delivered to the input of the shaker and both displacements and acceleration measures was observed. This confirmed that the estimation of RMS displacement values about 0.050 and 0.100 mm (corresponding to the 0.4 and 0.8  g noise RMS acceleration values, respectively) was indeed reliable.

Abbreviations

ANOVA:

Analysis of variance

AP:

Anterior–posterior

BS:

Best stimulation

COP:

Center of pressure

COPap:

COP in the anterior–posterior axis

COPml:

COP in the medio-lateral axis

g :

Gravity of Earth

HF:

High frequencies

LF:

Low frequencies

LT:

Light touch

ML:

Medio-lateral

PSD:

Power spectral density

QS:

Quiet standing

RMS:

Root mean square

RMSap:

COPap RMS

RMSml:

COPml RMS

SD:

Standard deviation

SR:

Stochastic resonance

VMap:

COPap velocity

VMml:

COPml velocity

VS1:

Vibratory stimulation 1, at intensity 0.4  g

VS2:

Vibratory stimulation 2, at intensity 0.8  g

References

  • Albertsen IM, Temprado JJ, Berton E (2010) Effect of haptic supplementation on postural stabilization: a comparison of fixed and mobile support conditions. Hum Mov Sci 29(6):999–1010

    Article  PubMed  Google Scholar 

  • Benda JB, Riley PO, Krebs DE (1994) Biomechanical relationship between center of gravity and center of pressure during standing. IEEE Trans Rehabil Eng 2(1):3–10

    Article  Google Scholar 

  • Bezrukov SM, Vodyanoy I (1995) Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378(6555):362–364

    Article  CAS  PubMed  Google Scholar 

  • Caron O, Faure B, Breniere Y (1997) Estimating the centre of gravity of the body on the basis of the centre of pressure in standing posture. J Biomech 30(11–12):1169–1171

    Article  CAS  PubMed  Google Scholar 

  • Clapp S, Wing AM (1999) Light touch contribution to balance in normal bipedal stance. Exp Brain Res 125(4):521–524

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Collins JJ, Imhoff TT, Grigg P (1996) Noise-enhanced tactile sensation. Nature 383(6603):770

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, Priplata AA, Gravelle DC, Niemi J, Harry J, Lipsitz LA (2003) Noise-enhanced human sensorimotor function. IEEE Eng Med Biol Mag 22(2):76–83

    Article  PubMed  Google Scholar 

  • Cordo P, Inglis JT, Verschueren S, Collins JJ, Merfeld DM, Rosenblum S, Buckley S, Moss F (1996) Noise in human muscle spindles. Nature 383(6603):769–770

    Article  CAS  PubMed  Google Scholar 

  • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365(6444):337–340

    Article  CAS  PubMed  Google Scholar 

  • Faisal AA, Selen LP, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9(4):292–303

    Article  CAS  PubMed  Google Scholar 

  • Gage WH, Winter DA, Frank JS, Adkin AL (2004) Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 19(2):124–132

    Article  PubMed  Google Scholar 

  • Gluckman BJ, Netoff TI, Neel EJ, Ditto WL, Spano ML, Schiff SJ (1996) Stochastic resonance in a neuronal network from mammalian brain. Phys Rev Lett 77(19):4098–4101

    Article  CAS  PubMed  Google Scholar 

  • Gravelle DC, Laughton CA, Dhruv NT, Katdare KD, Niemi JB, Lipsitz LA, Collins JJ (2002) Noise-enhanced balance control in older adults. Neuroreport 13(15):1853–1856

    Article  PubMed  Google Scholar 

  • Hidaka I, Ando S, Shigematsu H, Sakai K, Setoguchi S, Seto T, Hirooka Y, Takeshita A, Yamamoto Y (2001) Noise-enhanced heart rate and sympathetic nerve responses to oscillatory lower body negative pressure in humans. J Neurophysiol 86(2):559–564

    CAS  PubMed  Google Scholar 

  • Holden M, Ventura J, Lackner JR (1994) Stabilization of posture by precision contact of the index finger. J Vestib Res 4(4):285–301

    CAS  PubMed  Google Scholar 

  • Jaramillo F, Wiesenfeld K (1998) Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system. Nat Neurosci 1(5):384–388

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100(3):495–502

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Lackner JR (1995) The role of haptic cues from rough and slippery surfaces in human postural control. Exp Brain Res 103(2):267–276

    Article  CAS  PubMed  Google Scholar 

  • Jeka JJ, Schoner G, Dijkstra T, Ribeiro P, Lackner JR (1997) Coupling of fingertip somatosensory information to head and body sway. Exp Brain Res 113(3):475–483

    Article  CAS  PubMed  Google Scholar 

  • Johannsen L, Wing AM, Hatzitaki V (2007) Effects of maintaining touch contact on predictive and reactive balance. J Neurophysiol 97(4):2686–2695

    Article  PubMed  Google Scholar 

  • Krishnamoorthy V, Slijper H, Latash ML (2002) Effects of different types of light touch on postural sway. Exp Brain Res 147(1):71–79

    Article  PubMed  Google Scholar 

  • Lackner JR, Rabin E, DiZio P (2001) Stabilization of posture by precision touch of the index finger with rigid and flexible filaments. Exp Brain Res 139(4):454–464

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Lipsitz LA, Montero-Odasso M, Bean J, Kerrigan DC, Collins JJ (2002) Noise-enhanced vibrotactile sensitivity in older adults, patients with stroke, and patients with diabetic neuropathy. Arch Phys Med Rehabil 83(2):171–176

    Article  PubMed  Google Scholar 

  • Manjarrez E, Diez-Martinez O, Mendez I, Flores A (2002) Stochastic resonance in human electroencephalographic activity elicited by mechanical tactile stimuli. Neurosci Lett 324(3):213–216

    Article  CAS  PubMed  Google Scholar 

  • Martinez L, Perez T, Mirasso CR, Manjarrez E (2007) Stochastic resonance in the motor system: effects of noise on the monosynaptic reflex pathway of the cat spinal cord. J Neurophysiol 97(6):4007–4016

    Article  PubMed  Google Scholar 

  • McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5(5):e1000348

    Article  PubMed  Google Scholar 

  • Mezzarane RA, Kohn AF (2008) Postural control during kneeling. Exp Brain Res 187(3):395–405

    Article  PubMed  Google Scholar 

  • Morse RP, Evans EF (1996) Enhancement of vowel coding for cochlear implants by addition of noise. Nat Med 2(8):928–932

    Article  CAS  PubMed  Google Scholar 

  • Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115(2):267–281

    Article  PubMed  Google Scholar 

  • Oliveira LF, Simpson DM, Nadal J (1996) Calculation of area of stabilometric signals using principal component analysis. Physiol Meas 17(4):305–312

    Article  CAS  PubMed  Google Scholar 

  • Priplata A, Niemi J, Salen M, Harry J, Lipsitz LA, Collins JJ (2002) Noise-enhanced human balance control. Phys Rev Lett 89(23):238101

    Article  PubMed  Google Scholar 

  • Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ (2003) Vibrating insoles and balance control in elderly people. Lancet 362(9390):1123–1124

    Article  PubMed  Google Scholar 

  • Priplata AA, Patritti BL, Niemi JB, Hughes R, Gravelle DC, Lipsitz LA, Veves A, Stein J, Bonato P, Collins JJ (2006) Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol 59(1):4–12

    Article  PubMed  Google Scholar 

  • Reginella RL, Redfern MS, Furman JM (1999) Postural sway with earth-fixed and body-referenced finger contact in young and older adults. J Vestib Res 9(2):103–109

    CAS  PubMed  Google Scholar 

  • Richardson KA, Imhoff TT, Grigg P, Collins JJ (1998) Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli. Chaos 8(3):599–603

    Article  PubMed  Google Scholar 

  • Rogers MW, Wardman DL, Lord SR, Fitzpatrick RC (2001) Passive tactile sensory input improves stability during standing. Exp Brain Res 136(4):514–522

    Article  CAS  PubMed  Google Scholar 

  • Ross SE (2007) Noise-enhanced postural stability in subjects with functional ankle instability. Br J Sports Med 41(10):656–659 discussion 659

    Article  PubMed  Google Scholar 

  • Schmidt J, Berg DR, Ploeg H-L (2009) Precision, repeatability and accuracy of optotrak® optical motion tracking systems. Int J Exp Comput Biomech 1(1):114–127

    Article  Google Scholar 

  • Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  • Stacey WC, Durand DM (2000) Stochastic resonance improves signal detection in hippocampal ca1 neurons. J Neurophysiol 83(3):1394–1402

    CAS  PubMed  Google Scholar 

  • Stocks NG (2000) Suprathreshold stochastic resonance in multilevel threshold systems. Phys Rev Lett 84(11):2310–2313

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Using multivariate statistics. Pearson Education, Boston

    Google Scholar 

  • Ward LM, Neiman A, Moss F (2002) Stochastic resonance in psychophysics and in animal behavior. Biol Cybern 87(2):91–101

    Article  PubMed  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and squids. Nature 373(6509):33–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by CNPq. The first author is a recipient of a fellowship from FAPESP, grant #2007/03608-9. We are grateful to Sandro A. Miqueleti for his invaluable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Henrique Magalhães.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magalhães, F.H., Kohn, A.F. Vibratory noise to the fingertip enhances balance improvement associated with light touch. Exp Brain Res 209, 139–151 (2011). https://doi.org/10.1007/s00221-010-2529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2529-3

Keywords

Navigation