Skip to main content
Log in

The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The primary function of the angular vestibulo-ocular reflex (VOR) is to stabilise images on the retina during head movements. Retinal image movement is the likely feedback signal that drives VOR modification/adaptation for different viewing contexts. However, it is not clear whether a retinal image position or velocity error is used primarily as the feedback signal. Recent studies examining this signal are limited because they used near viewing to modify the VOR. However, it is not known whether near viewing drives VOR adaptation or is a pre-programmed contextual cue that modifies the VOR. Our study is based on analysis of the VOR evoked by horizontal head impulses during an established adaptation task. Fourteen human subjects underwent incremental unilateral VOR adaptation training and were tested using the scleral search coil technique over three separate sessions. The update rate of the laser target position (source of the retinal image error signal) used to drive VOR adaptation was different for each session [50 (once every 20 ms), 20 and 15/35 Hz]. Our results show unilateral VOR adaptation occurred at 50 and 20 Hz for both the active (23.0 ± 9.6 and 11.9 ± 9.1 % increase on adapting side, respectively) and passive VOR (13.5 ± 14.9, 10.4 ± 12.2 %). At 15 Hz, unilateral adaptation no longer occurred in the subject group for both the active and passive VOR, whereas individually, 4/9 subjects tested at 15 Hz had significant adaptation. Our findings suggest that 1–2 retinal image position error signals every 100 ms (i.e. target position update rate 15–20 Hz) are sufficient to drive VOR adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aw ST, Haslwanter T, Halmagyi GM, Curthoys IS, Yavor RA, Todd MJ (1996) Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations I. Responses in normal subjects. J Neurophysiol 76:4009–4020

    CAS  PubMed  Google Scholar 

  • Black RA, Halmagyi GM, Thurtell MJ, Todd MJ, Curthoys IS (2005) The active head-impulse test in unilateral peripheral vestibulopathy. Arch Neurol 62:290–293

    Article  PubMed  Google Scholar 

  • Chim D, Lasker DM, Migliaccio AA (2013) Visual contribution to the high-frequency human angular vestibulo-ocular reflex. Exp Brain Res 230:127–135

    Article  CAS  PubMed  Google Scholar 

  • Della Santina CC, Cremer PD, Carey JP, Minor LB (2002) Comparison of head thrust test with head autorotation test reveals that the vestibulo-ocular reflex is enhanced during voluntary head movements. Arch Otolaryngol Head Neck Surg 128:1044–1054

    Article  PubMed  Google Scholar 

  • Diggle PJ, Liang KY, Zeger SL (1994) Analysis of longitudinal data. Oxford University Press, New York

    Google Scholar 

  • Eggers SD, De Pennington N, Walker MF, Shelhamer M, Zee DS (2003) Short-term adaptation of the VOR: non-retinal-slip error signals and saccade substitution. Ann N Y Acad Sci 1004:94–110

    Article  PubMed  Google Scholar 

  • Gauthier GM, Robinson DA (1975) Adaptation of human’s vestibulo-ocular reflex to magnifying glasses. Brain Res 92:331–335

    Article  CAS  PubMed  Google Scholar 

  • Gonshor A, Jones GM (1976a) Short-term adaptive changes in the human vestibulo-ocular reflex arc. J Physiol 256:361–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonshor A, Jones GM (1976b) Extreme vestibulo-ocular adaptation induced by prolonged optical reversal of vision. J Physiol 256:381–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman GE, Leigh RJ, Abel LA, Lanska DJ, Thurston SE (1988) Frequency and velocity of rotational head perturbations during locomotion. Exp Brain Res 70:470–476

    Article  CAS  PubMed  Google Scholar 

  • Halmagyi GM, Curthoys IS (1988) A clinical sign of canal paresis. Arch Neurol 45:737

    Article  CAS  PubMed  Google Scholar 

  • Han YH, Kumar AN, Reschke MF, Somers JT, Dell’Osso LF, Leigh RJ (2005) Vestibular and non-vestibular contributions to eye movements that compensate for head rotations during viewing of near targets. Exp Brain Res 165:294–304

    Article  PubMed  Google Scholar 

  • Haslwanter T (1995) Mathematics of three-dimensional eye rotations. Vision Res 35:1727–1739

    Article  CAS  PubMed  Google Scholar 

  • Hecht S, Shlaer S (1936) Intermittent stimulation by light V. The relation between intensity and critical frequency for different parts of the spectrum. J Gen Physiol 19:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepp K (1990) On Listing’s Law. Commun Math Phys 132:285–292

    Article  Google Scholar 

  • Ito M (1975) Learning control mechanisms by the cerebellum investigated in the flocculo-vestibulo-ocular system. The nervous system. (Ed.) Tower DB Volume 1. The basic neurosciences. Raven Press, New York, p. 245-252

  • Jones GM (1985) Adaptive modulation of VOR parameters by vision. Rev Oculomot Res 1:21–50

    CAS  PubMed  Google Scholar 

  • Lewis RF (2003) Context-dependent adaptation of visually-guided arm movements and vestibular eye movements: role of the cerebellum. Cerebellum 2:123–130

    Article  PubMed  Google Scholar 

  • Lewis RF, Clendaniel RA, Zee DS (2003) Vergence-dependent adaptation of the vestibulo-ocular reflex. Exp Brain Res 152:335–340

    Article  PubMed  Google Scholar 

  • Migliaccio AA, Schubert MC (2013) Unilateral adaptation of the human angular vestibulo-ocular reflex. J Assoc Res Otolaryngol 14:29–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Migliaccio AA, Schubert MC (2014) Pilot study of a new rehabilitation tool: improved unilateral short-term adaptation of the human angular vestibulo-ocular reflex. Otol Neurotol 35:310–316

    Article  Google Scholar 

  • Migliaccio AA, Todd MJ (1999) Real-time rotation vectors. Australas Phys Eng Sci Med 22:73–80

    CAS  PubMed  Google Scholar 

  • Migliaccio AA, Cremer PD, Aw ST, Halmagyi GM, Curthoys IS, Minor LB, Todd MJ (2003) Vergence-mediated changes in the axis of eye rotation during the human vestibulo-ocular reflex can occur independent of eye position. Exp Brain Res 151:238–248

    Article  PubMed  Google Scholar 

  • Miles FA, Eighmy BB (1980) Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. J Neurophysiol 43:1406–1425

    CAS  PubMed  Google Scholar 

  • Paige G, Sargent E (1991) Visually-induced adaptive plasticity in the human vestibulo-ocular reflex. Exp Brain Res 84:25–34

    Article  CAS  PubMed  Google Scholar 

  • Paige GD, Seidman SH (1999) Characteristics of the VOR in response to linear acceleration. Ann N Y Acad Sci 871:123–135

    Article  CAS  PubMed  Google Scholar 

  • Paige GD, Telford L, Seidman SH, Barnes GR (1998) Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. J Neurophysiol 80:2391–2404

    CAS  PubMed  Google Scholar 

  • Schubert MC, Della Santina CC, Shelhamer M (2008) Incremental angular vestibulo-ocular reflex adaptation to active head rotation. Exp Brain Res 191:435–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelhamer M, Robinson DA, Tan HS (1992) Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans. J Vestib Res 2:89–96

    CAS  PubMed  Google Scholar 

  • Straumann D, Zee DS, Solomon D, Lasker AG, Roberts DC (1995) Transient torsion during and after saccades. Vision Res 35:3321–3334

    Article  CAS  PubMed  Google Scholar 

  • Viirre E, Tweed D, Milner K, Vilis T (1986) A reexamination of the gain of the vestibuloocular reflex. J Neurophysiol 56:439–450

    CAS  PubMed  Google Scholar 

  • Watson AB (1990) Optimal displacement in apparent motion and quadrature models of motion sensing. Vision Res 30:1389–1393

    Article  CAS  PubMed  Google Scholar 

  • Watson AB, Ahumada AJ, Farrell JE (1986) Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays. J Opt Soc Am 3:300–307

    Article  Google Scholar 

  • Yakushin SB, Raphan T, Cohen B (2000) Context-specific adaptation of the vertical vestibulo-ocular reflex with regard to gravity. J Neurophysiol 84:3067–3071

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. A. Migliaccio was supported by The Garnett Passe and Rodney Williams Memorial Foundation Senior/Principal Research Fellowship in Otorhinolaryngology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Americo A. Migliaccio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadaee, S.B., Migliaccio, A.A. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation. Exp Brain Res 234, 1085–1094 (2016). https://doi.org/10.1007/s00221-015-4535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4535-y

Keywords

Navigation