Skip to main content

Advertisement

Log in

Imidazoleacetic acid-ribotide in vestibulo-sympathetic pathway neurons

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artis AS, Bozdagi O, Prell GP, Holstein GR, Huntley GW, Martinelli GP (2007) Endogenous imidazol(in)e receptor ligand modulates corticostriatal synaptic transmission. Soc Neurosci Abstr 893.2

  • Atlas D (1991) Clonidine-displacing substance (CDS) and its putative imidazoline receptor. New leads for further divergence of a2-adrenergic receptor activity. Biochem Pharmacol 41:1541–1549

    Article  CAS  PubMed  Google Scholar 

  • Bourassa EA, Sved AF, Speth RC (2009) Angiotensin modulation of rostral ventrolateral medulla (RVLM) in cardiovascular regulation. Mol Cell Endocrinol 302:167–175

    Article  CAS  PubMed  Google Scholar 

  • Bousquet P, Feldman J, Schwartz J (1984) Central cardiovascular effects of α-adrenergic drugs: difference between catecholamines and imidazolines. J Pharmacol Exp Ther 230:232–236

    CAS  PubMed  Google Scholar 

  • Bozdagi O, Martinelli GP, Prell GD, Friedrich VLJ, Huntley GW, Holstein GR (2011) Imidazoleacetic acid-ribotide induces depression of synaptic responses in hippocampus through activation of Imidazoline receptors. J Neurophysiol 105:1266–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozorgi A, Chung S, Kaffashi F et al (2013) Significant postictal hypotension: expanding the spectrum of seizure-induced autonomic dysregulation. Epilepsia 54:e127–e130

    Article  PubMed  PubMed Central  Google Scholar 

  • Card JP, Sved JC, Craig B, Raizada M, Vazquez J, Sved AF (2006) Efferent projections of rat rostroventrolateral medulla C1 catecholamine neurons: implications for the central control of cardiovascular regulation. J Comp Neurol 499:840–859

    Article  PubMed  Google Scholar 

  • Chan SL (1998) Clonidine-displacing substance and its putative role in control of insulin secretion: a minireivew. Gen Pharmacol 31:525–529

    Article  CAS  PubMed  Google Scholar 

  • Chan CKS, Burke SL, Zhu H, Piletz JE, Head GA (2005) Imidazoline receptors associated with noradrenergic terminals in the rostral ventrolateral medulla mediate the hypotensive responses of moxonidine but not clonidine. Neuroscience 132:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Chan CK, Burke SL, Head GA (2007) Contribution of imidazoline receptors and alpha2-adrenoceptors in the rostral ventrolateral medulla to sympathetic baroreflex inhibition by systemic rilmenidine. J Hypertens 25:147–155

    Article  CAS  PubMed  Google Scholar 

  • Cohen B, Martinelli GP, Raphan T, Schaffner A, Xiang Y, Holstein GR, Yakushin SB (2013) The vasovagal response of the rat: its relation to the vestibulosympathetic reflex and to Mayer waves. FASEB J 27:2564–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vos H, Bricca G, DeKeyser J, DeBacker J-P, Bousquet P, Vauquelin G (1994) Imidazoline receptors, non-adreneergic idazoxan binding sites and a2-adrenoceptors in the human central nervous system. Neuroscience 59:589–598

    Article  PubMed  Google Scholar 

  • Del Bello F, Bargelli V, Cifani C et al (2015) Antagonism/agonism modulation of build novel antihypertensives selectively triggering I1-imidazoline receptor activation. ACS Med Chem Lett 6:496–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Deuchars SA, Morrison SF, Gilbey MP (1995) Medullary-evoked EPSPs in neonatal rat sympathetic preganglionic neurones in vitro. J Physiol 487:453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eglen RM, Hudson AL, Kendall DA, Nutt DJ, Morgan NG, Wilson VG, Dillon MP (1998) Seeing through a glass darkly: casting light on the imidazoline “I” sites. Trends Pharmacol Sci 19:381–390

    Article  CAS  PubMed  Google Scholar 

  • Ernsberger P, Haxhiu MA (1997) The I1-imidazoline-binding site is a functional receptor mediating vasodepression via the ventral medulla. Am J Physiol 273:R1572–R1579

    CAS  PubMed  Google Scholar 

  • Ernsberger P, Feinland G, Meeley MP, Reis DJ (1990) Characterization and visualization of clonidine-sensitive imidazole sites in rat kidney which recognize clonidine-displacing substance. Am J Hypertens 3:90–97

    CAS  PubMed  Google Scholar 

  • Ernsberger P, Elliott HL, Weimann H-J et al (1993) Moxonidine: a second-generation central antihypertensive agent. Cardiovasc Drug Rev 11:411–431

    Article  CAS  Google Scholar 

  • Friedrich VLJ, Martinelli GP, Prell GD, Holstein GR (2007) Distribution and cellular localization of imidazoleacetic acid-ribotide, an endogenous ligand at imidazol(in)e and adrenergic receptors, in rat brain. J Chem Neuroanat 33:53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Sevilla JA, Escriba PV, Guimon J (1990) Imidazoline receptors and human brain disorders. Ann N Y Acad Sci 881:392–409

    Article  Google Scholar 

  • Ghazaleh HA, Tyacke RJ, Hudson AL (2015) Borne identity: leading endogenous suspects at imidaoline binding sites. J Neurol Neurosci 6:11

    Google Scholar 

  • Goodchild AK, Moon EA (2009) Maps of cardiovascular and respiratory regions of rat ventral medulla: focus on the caudal medulla. J Chem Neuroanat 38:209–221

    Article  CAS  PubMed  Google Scholar 

  • Greney U, Ronde P, Magnier C et al (2000) Coupling of I1 imidazoline receptors to the cAMP pathway: studies with a highly selective ligand, Benazoline. Mol Pharmacol 57:1142–1151

    CAS  PubMed  Google Scholar 

  • Halaris A, Piletz J (2007) Agmatine: metabolic pathway and spectrum of activity in brain. CNS Drugs 21:885–900

    Article  CAS  PubMed  Google Scholar 

  • Harper RM, Kinney HC (2010) Potential mechanisms of failure in the sudden infant death syndrome. Curr Pediatr Rev 6:39–47. doi:10.2174/157339610791317214

    Article  PubMed  PubMed Central  Google Scholar 

  • Head GA (1999) Central imidazoline- and a2-receptors involved in the cardiovascular actions of centrally acting antihypertensive agents. Ann N Y Acad Sci 881:279–286

    Article  CAS  PubMed  Google Scholar 

  • Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc Hematol Agents Med Chem 4:17–32

    Article  CAS  PubMed  Google Scholar 

  • Holstein GR, Martinelli GP, Henderson SC, Friedrich VLJ, Rabbitt RD, Highstein SM (2004) Gamma-aminobutyric acid is present in a spatially discrete subpopulation of hair cells in the crista ampullaris of the toadfish, Opsanus tau. J Comp Neurol 471:1–10

    Article  CAS  PubMed  Google Scholar 

  • Holstein GR, Friedrich VLJ, Kang T, Kukielka E, Martinelli GP (2011a) Direct projections from the caudal vestibular nuclei to the ventrolateral medulla in the rat. Neuroscience 175:104–117

    Article  CAS  PubMed  Google Scholar 

  • Holstein GR, Martinelli GP, Friedrich VLJ (2011b) Anatomical observations of the caudal vestibulo-sympathetic pathway. J Vestib Res 21:49–62

    PubMed  PubMed Central  Google Scholar 

  • Holstein GR, Friedrich VLJ, Martinelli GP, Ogorodnikov D, Yakushin SB, Cohen B (2012) Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation. Front Neurol 3:1–12

    Article  Google Scholar 

  • Holstein GR, Friedrich VLJ, Martinelli GP (2014) Projection neurons of the vestibulo-sympathetic reflex pathway. J Comp Neurol 522:2053–2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Holstein GR, Friedrich VL, Martinelli GP (2016) Glutamate and GABA in vestibulo-sympathetic pathway neurons. Front Neuroanat. doi:10.3389/fnana.2016.00007

    PubMed  PubMed Central  Google Scholar 

  • Karppanen H (1977) Comparison of central hypotensive effects of clonidine and imidazole acetic acid. Acta Pharmacol Toxicol 41:20

    Google Scholar 

  • Lione LA, Nutt DJ, Hudson AL (1998) Characterisation and localisation of [3H] 2-(2-benzofuranyl)-2-imidazoline binding in rat brain: a selective ligand for imidazoline I 2 receptors. Eur J Pharmacol 353:123–135

    Article  CAS  PubMed  Google Scholar 

  • Lipski J, Kanjhan R, Kruszewska B, Smith M (1995) Barosensitive neurons in the rostral ventrolateral medulla of the rat in vivo: morphological properties and relationship to C1 adrenergic neurons. Neuroscience 69:601–618

    Article  CAS  PubMed  Google Scholar 

  • Machaalani R, Waters KA (2014) Neurochemical abnormalities in the brainstem of the Sudden Infant Death Syndrome (SIDS). Paediatric Respir Rev 15:293–300

    Google Scholar 

  • Martinelli GP, Friedrich VLJ, Prell GD, Holstein GR (2007) Vestibular neurons in the rat contain imidazoleacetic acid-ribotide, a putative neurotransmitter involved in blood pressure regulation. J Comp Neurol 501:568–581

    Article  CAS  PubMed  Google Scholar 

  • Molderings GJ, Göthert M (1999) Imidazoline binding sites and receptors in cardiovascular tissue. Gen Pharmacol 32:17–22

    Article  CAS  PubMed  Google Scholar 

  • Moreira TS, Takakura AC, Menani JV, Sato MA, Colombari E (2004) Central blockade of nitric oxide synthesis reduces moxonidine-induced hypotension. Br J Pharmacol 142:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan NG (1999) Imidazoline receptors: new targets for anti-hyperglycemic drugs. Exp Opin Invest Drugs 8:575–584

    Article  CAS  Google Scholar 

  • Morrison SF (2003) Glutamate transmission in the rostral ventrolateral medullary sympathetic premotor pathway. Cell Mol Neurobiol 23:761–772

    Article  CAS  PubMed  Google Scholar 

  • Nikolic K, Agbaba D (2012) Imidazoline antihypertensive drugs: selective I1-imidazoline receptor activation. Cardiovasc Ther 30:209–216

    Article  CAS  PubMed  Google Scholar 

  • Parini A, Moudanos CG, Pizzinat N, Lanier SM (1996) The elusive family of imidazoline binding sites. Trends Pharmacol Sci 17:13–16

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Piletz JE, Ivanov TR, Sharp JD et al (2000) Imidazoline receptor antisera-selected (IRAS) cDNA: cloning and characterization. DNA Cell Biol 19:319–329

    Article  CAS  PubMed  Google Scholar 

  • Prell GD, Martinelli GP, Holstein GR et al (2004) Imidazoleacetic acid-ribotide: an endogenous ligand that stimulates imidazol(in)e receptors. Proc Natl Acad Sci U S A 101:13677–13682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raju DV, Smith Y (2006) Anterograde axonal tract tracing. Curr Protoc Neurosci 1:1–14

    Google Scholar 

  • Regunathan S, Reis DJ (1996) Imidazoline receptors and their endogenous ligands. Ann Rev Pharmacol Toxicol 36:511–544

    Article  CAS  Google Scholar 

  • Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends in Pharmacol. Science 21:187–193

    CAS  Google Scholar 

  • Remaury A, Raddatz R, Ordener C et al (2000) Analysis of the pharmacological and molecular heterogeneity of I(2)-imidazoline-binding proteins using monoamine oxidase-deficient mouse models. Mol Pharmacol 58:1085–1090

    CAS  PubMed  Google Scholar 

  • Ruggiero DA, Cravo SL, Golanov E, Gomez R, Anwar M, Reis DJ (1994) Adrenergic and non-adrenergic spinal projections of a cardiovascular-active pressor area of medulla oblongata: quantitative topographic analysis. Brain Res 663:107–120

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR (2008) Retrograde axonal tracing with fluorescent markers. Curr Protoc Neurosci 43:1–17

    Google Scholar 

  • Schreihofer AM, Guyenet PG (1997) Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol 387:524–536

    Article  CAS  PubMed  Google Scholar 

  • Separovic D, Kester M, Haxhiu MA, Ernsberger P (1997) Activation of phosphatidylcholine-selective phospholipase C by I1-imidazoline receptors in PC12 cells and rostral ventrolateral medulla. Brain Res 749:335–339

    Article  CAS  PubMed  Google Scholar 

  • Stornetta RL (2009) Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata. J Chem Neuroanat 38:222–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe M, Kino Y, Honda M, Ono H (2006) Presynaptic I1-Imidazoline receptors reduce GABAergic synaptic transmission in striatal medium spiny neurons. J Neurosci 26:1795–1802

    Article  CAS  PubMed  Google Scholar 

  • Tolentino-Silva FP, Haxhiu MA, Waldbaum S, Dreshay IA, Ernsberger P (2000) α2-Adrenergic receptors are not required for central antihypertensive action of moxonidine in mice. Brain Res 862:26–35

    Article  CAS  PubMed  Google Scholar 

  • Vidal PP, Cullen KE, Curthoys IS et al (2015) The Vestibular System. In: Paxinos G, Watson C (eds) The rat nervous system, 4th edn. Elsevier Academic Press, London, pp 805–864

    Chapter  Google Scholar 

  • Wang W-Z, Yuan W-J, Ren A-J, Pan Y-X, Tang C-S, Su D-F (2003) Role of I1-imidazoline receptors within the caudal ventrolateral medulla in cardiovascular responsees to clonidine in rats. J Cardiovasc Pharmacol 42:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Su R-B, Li J (2008) Agmatine and imidazoline receptors: their role in opioid analgesia, tolerance and dependence. Cell Mol Neurobiol 28:629–641

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Bolton PS, Macefield VG (2014) Vestibulo-sympathetic responses. Compr Physiol 4:851–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Abdel-Rahman AA (2005) Mitogen-activated protein kinase phosphorylation in the rostral ventrolateral medulla plays a key role in imidazoline (I1)-receptor-mediated hypotension. J Pharmacol Exp Ther 314:945–952

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Sergei Yakushin for assistance with the sGVS stimulation, Dr. Ewa Kukielka for technical assistance, and Dr. George Prell for helpful discussions concerning IAARP. The research was supported by NIH Grant DC008846.

Author contributions

All authors approved the final version of this article. Experiments were conceived and designed by GH, GM, and VF. GM performed the tracer injections, sGVS stimulation, and immunolabeling studies; GH performed the microscopy, image processing, and data analysis. GH prepared the figures, and all authors contributed to the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gay R. Holstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holstein, G.R., Friedrich, V.L. & Martinelli, G.P. Imidazoleacetic acid-ribotide in vestibulo-sympathetic pathway neurons. Exp Brain Res 234, 2747–2760 (2016). https://doi.org/10.1007/s00221-016-4725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4725-2

Keywords

Navigation