Skip to main content
Log in

Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The amygdaloid complex and hippocampal region contribute to emotional activities, learning, and memory. Mounting evidence suggests a primary role for serotonin (5-HT) in the physiological basis of memory and its pathogenesis by modulating directly the activity of these two areas and their cross-talk. Indeed, both the amygdala and the hippocampus receive remarkably dense serotoninergic inputs from the dorsal and median raphe nuclei. Anatomical, behavioral and electrophysiological evidence indicates the 5-HT2A receptor as one of the principal postsynaptic targets mediating 5-HT effects. In fact, the 5-HT2A receptor is the most abundant 5-HT receptor expressed in these brain structures and is expressed on both amygdalar and hippocampal pyramidal glutamatergic neurons as well as on γ-aminobutyric acid (GABA)-containing interneurons. 5-HT2A receptors on GABAergic interneurons stimulate GABA release, and thereby have an important role in regulating network activity and neural oscillations in the amygdala and hippocampal region. This review will focus on the distribution and physiological functions of the 5-HT2A receptor in the amygdala and hippocampal region. Taken together the results discussed here suggest that 5-HT2A receptor may be a potential therapeutic target for those disorders related to hippocampal and amygdala dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe K, Niikura Y, Misawa M (2003) The induction of long-term potentiation at amygdalo-hippocampal synapses in vivo. Biol Pharm Bull 26:1560–1562

    Article  PubMed  CAS  Google Scholar 

  • Abe K, Fujimoto T, Akaishi T, Misawa M (2009) Stimulation of basolateral amygdaloid serotonin 5-HT(2C) receptors promotes the induction of long-term potentiation in the dentate gyrus of anesthetized rats. Neurosci Lett 451:65–68

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP (2000) The amygdala: a functional analysis, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Amaral DG, Lavenex P (2007) Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 37–114

    Google Scholar 

  • Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrusDG: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22

    Article  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and theirs function. Neuropharmacology 38:1083–1152

    Article  PubMed  CAS  Google Scholar 

  • Bauman MD, Amaral DG (2005) The distribution of serotoninergic fibers in the macaque monkey amygdala: an immunohistochemical study using antisera to 5-hydroxytriptamine. Neuroscience 136:193–203

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA (1980) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87–114

    Article  PubMed  CAS  Google Scholar 

  • Bombardi C (2011) Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid. Brain Res 1370:112–128

    Article  PubMed  CAS  Google Scholar 

  • Bombardi C (2012) Neuronal localization of 5-HT2A receptor immunoreactivity in the rat hippocampal region. Brain Res Bull 87:259–273

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Hough J, Li H (2003) Serotonin type II receptor activation facilitates synaptic plasticity via N-Methyl-d-Aspartate-mediated mechanism in the rat basolateral amygdala. Neuroscience 119:53–63

    Article  PubMed  CAS  Google Scholar 

  • Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular end subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209

    Article  PubMed  Google Scholar 

  • de Quervain DJ, Henke K, Aerni A, Coluccia D, Wollmer MA, Hock C, Nitsch RM, Papassotiropoulos A (2003) A functional genetic variation of the 5-HT2A receptor affects human memory. Nat Neurosci 6:1141–1142

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Pierucci M, Benigno A, Esposito E (2006) Central serotonin2c receptor: from physiology to pathology. Curr Top Med Chem 6:1909–1925

    Article  PubMed  Google Scholar 

  • Di Giovanni G, Esposito E, Di Matteo V (eds) (2011) 5-HT2C receptors in the pathophysiology of CNS disease. Springer, New York

    Google Scholar 

  • Di Matteo V, Di Giovanni G, Esposito E (2000) SB 242084: a selective 5-HT(2C) receptor antagonist. CNS Drugs Rev 3:195–205

    Google Scholar 

  • Eichenbaum H, Schoenbaum G, Young B, Bunsey M (1996) Functional organization of the hippocampal memory system. Proc Natl Acad Sci USA 93:13500–13507

    Article  PubMed  CAS  Google Scholar 

  • Ellender TJ, Paulsen O (2010) The many tunes of perisomatic targeting interneurons in the hippocampal network. Front Cell Neurosci 4:1–26

    Google Scholar 

  • Esposito E, Di Matteo V, Di Giovanni G (2008) Serotonin-dopamine interaction: an overview. Prog Brain Res 172:3–6

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Goh ELK, Sailor KA, Kitabatake Y, Ming G, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    Article  PubMed  CAS  Google Scholar 

  • Graeff FG, Zangrossi H Jr (2010) The dual role of serotonin in defense and the mode of action of antidepressants on generalized anxiety and panic disorders. Cent Nerv Syst Agents Med Chem 10:207–217

    Article  PubMed  CAS  Google Scholar 

  • Gray JA, Roth BL (2001) Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists. Brain Res Bull 56:441–451

    Article  PubMed  CAS  Google Scholar 

  • Guo JD, Rainnie DG (2010) Presynaptic 5-HT1B receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience 165:1390–1401

    Article  PubMed  CAS  Google Scholar 

  • Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10:355–362

    Article  PubMed  Google Scholar 

  • Hashimoto K, Kita H (2008) Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. J Neurophysiol 99:1723–1732

    Article  PubMed  CAS  Google Scholar 

  • Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30:203–214

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  • Hurlemann R, Schlaepfer TE, Matusch A, Reich H, Shah NJ, Zilles K, Maier W, Bauer A (2009) Reduced 5-HT(2A) receptor signaling following selective bilateral amygdala damage. Soc Cogn Affect Neurosci 4:79–84

    Article  PubMed  Google Scholar 

  • Insausti R, Herrero MT, Witter MP (1997) Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7:146–183

    Article  PubMed  CAS  Google Scholar 

  • Jansson A, Tinner B, Bancila M, Vergé D, Steinbusch HWM, Agnati LF, Fuxe K (2001) Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5- hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain. J Chem Neuroanat 22:185–203

    Article  PubMed  CAS  Google Scholar 

  • Jha S, Rajendran R, Fernandes KA, Vaidya VA (2008) 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci Lett 441:210–214

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Xing G, Yang C, Verma A, Zhang L, Li H (2008) Stress impairs 5-HT2A Receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 33:1–14

    Article  CAS  Google Scholar 

  • Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, van Giersbergen PL, McCloskey TC, Johnson MP, McCarty DR, Poirot M, Senyah Y, Siegel BW, Widmaier C (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favourable CNS safety profile. J Pharmacol Exp Ther 277:968–981

    PubMed  CAS  Google Scholar 

  • Kemppainen S, Jolkkonen E, Pitkänen A (2002) Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and the parahippocampal region in rat. Hippocampus 12:735–755

    Article  PubMed  Google Scholar 

  • Kirby ED, Friedman AR, Covarrubias D, Ying C, Sun WG, Goosens KA, Sapolsky RM, Kaufer D (2012) Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons. Mol Psychiatry 17:527–536

    Article  PubMed  CAS  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  • Klempin F, Babu H, De Pietri TD, Alarcon E, Fabel K, Kempermann G (2010) Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Front Mol Neurosci 3:1–11

    Google Scholar 

  • LaBar KS, Phelps EA (1998) Role of the human amygdala in arousal mediated memory consolidation. Psych Sci 9:490–493

    Article  Google Scholar 

  • Lopez-Gimenez JF, Vilaro MT, Palacios JM, Mengod G (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429:571–589

    Article  PubMed  CAS  Google Scholar 

  • Lüttgen M, Ögren SO, Meister B (2004) Chemical identity of 5-HT2A receptor immunoreactive neurons of the rat septal complex and dorsal hippocampus. Brain Res 1010:156–165

    Article  PubMed  Google Scholar 

  • Maccaferri G, Lacaille JC (2003) Interneuron Diversity series: hippocampal interneuron classifications–making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    Article  PubMed  CAS  Google Scholar 

  • Majak K, Pitkänen A (2003) Projections from the periamygdaloid cortex to the amygdaloid complex, the hippocampal formation, and the parahippocampal region: a PHA-L study in the rat. Hippocampus 13:922–942

    Article  PubMed  Google Scholar 

  • McDonald AJ (1992) Cells types and intrinsic connections of the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 67–96

    Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F (2007) Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience 146:306–320

    Article  PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F, Mania I, Rainnie D (2005) Evidence for a perisomatic innervation of parvalbumin-containing interneurons by individual pyramidal cells in the basolateral amygdala. Brain Res 1035:32–40

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CK, Miyashita T, Setlow B, Marjon KD, Steward O, Guzowski JF et al (2005) Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proc Natl Acad Sci USA 102:10718–10723

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Huang M (2008) In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res 172:177–197

    Article  PubMed  CAS  Google Scholar 

  • Mintun MA, Sheline YI, Moerlein SM, Vlassenko AG, Huang Y, Snyder AZ (2004) Decreased hippocampal 5-HT2A receptor binding in major depressive disorder: in vivo measurement with [18F]altanserin positron emission tomography. Biol Psychiatry 55:217–224

    Article  PubMed  CAS  Google Scholar 

  • Morilak DA, Garlow SJ, Ciaranello RD (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience 54:701–717

    Article  PubMed  CAS  Google Scholar 

  • Morris R (2007) Theories of hippocampal function. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 581–694

    Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2006) Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol 494:635–650

    Article  PubMed  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2007a) Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala. J Comp Neurol 500:513–529

    Article  PubMed  CAS  Google Scholar 

  • Muller JF, Mascagni F, McDonald AJ (2007b) Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J Comp Neurol 505:314–335

    Article  PubMed  Google Scholar 

  • Paré D, Collins DR (2000) Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J Neurosci 16:3334–3350

    Google Scholar 

  • Paré D, Collins DR, Pelletier JG (2002) Amygdala oscillations and the consolidation of emotional memories. Trends Cogn Sci 6:306–314

    Article  PubMed  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    Article  PubMed  CAS  Google Scholar 

  • Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14:198–202

    Article  PubMed  CAS  Google Scholar 

  • Piguet P, Galvan M (1994) Transient and long-lasting actions of 5-HT on rat dentate gyrus neurones in vitro. J Physiol 481:629–639

    PubMed  CAS  Google Scholar 

  • Pikkarainen M, Pitkänen A (2001) Projections from the lateral, basal and accessory basal nuclei of the amygdala to the perirhinal and postrhinal cortices in rat. Cereb Cortex 11:1064–1082

    Article  PubMed  CAS  Google Scholar 

  • Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkänen A (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403:229–260

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 31–115

    Google Scholar 

  • Pitkänen A, Kemppainen S (2002) Comparison of the distribution of calcium-binding proteins and intrinsic connectivity in the lateral nucleus of the rat, monkey, and human amygdala. Pharmacol Biochem Behav 71:369–377

    Article  PubMed  Google Scholar 

  • Pitkänen A, Kelly JL, Amaral DG (2002) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus 12:186–205

    Article  PubMed  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res 23:163–178

    Article  PubMed  CAS  Google Scholar 

  • Pralong E, Magistretti P, Stoop R (2002) Cellular perspectives on the glutamate-monoamine interactions in limbic lobe structures and their relevance for some psychiatric disorders. Prog Neurobiol 67:173–202

    Article  PubMed  CAS  Google Scholar 

  • Puig MV, Celada P, Díaz-Mataiax L, Artigias F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors. Relationship to thalamocortical afferents. Cereb Cortex 13:1870–1882

    Article  Google Scholar 

  • Rainnie DG (1999) Serotoninergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82:69–85

    PubMed  CAS  Google Scholar 

  • Rainnie DG, Mania I, Mascagni F, McDonald AJ (2006) Physiological and morphological characterization of parvalbumin-containing interneurons of the rat basolateral amygdala. J Comp Neurol 498:142–161

    Article  PubMed  Google Scholar 

  • Regina MJ, Bucelli RC, Winter JC, Rabin RA (2004) Cellular mechanism of serotonin 5-HT2A receptor-mediated cGMP formation: the essential role of glutamate. Brain Res 1003:168–175

    Article  PubMed  CAS  Google Scholar 

  • Richardson MP, Strange BA, Dolan RJ (2004) Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7:278–285

    Article  PubMed  CAS  Google Scholar 

  • Richter-Levin G (2004) The amygdala, the hippocampus, and emotional modulation of memory. Neuroscientist 10:31–39

    Article  PubMed  Google Scholar 

  • Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    PubMed  CAS  Google Scholar 

  • Scharfman HE, Witter MP, Schwarcz R (2000) The parahippocampal region Implications for neurological and psychiatric diseases. Introduction Ann NY Acad Sci 911:ix–xiii

    Article  CAS  Google Scholar 

  • Shen R-Y, Andrade R (1998) 5-hydroxytryptamine 2 receptor facilitates GABAergic neurotransmission in rat hippocampus. J Pharmacol Exp Ther 285:805–812

    PubMed  CAS  Google Scholar 

  • Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann NY Acad Sci 1071:67–79

    Article  PubMed  Google Scholar 

  • Sokal DM, Giarola AS, Large CH (2005) Effects of GABAB, 5-HT1A, and 5-HT2 receptor stimulation on activation and inhibition of the rat lateral amygdala following medial geniculate nucleus stimulation in vivo. Brain Res 1031:141–150

    Article  PubMed  CAS  Google Scholar 

  • Spampanato J, Polepalli J, Sah P (2011) Interneurons in the basolateral amygdala. Neuropharmacology 60:765–773

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Davidowa H, Albrecht D (2000) 5-HT1A receptor-mediated inhibition and 5-HT2 as well as 5-HT3 receptor-mediated excitation in different subdivisions of the rat amygdala. Synapse 38:328–337

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat cell bodies and terminals. Neuroscience 6:557–618

    Article  PubMed  CAS  Google Scholar 

  • Stutzmann GE, LeDoux JE (1999) GABAergic antagonist block the inhibitory effects of serotonin in the lateral amygdala: a mechanism for modulation of sensory inputs related to fear conditioning. J Neurosci 19:1–4

    Google Scholar 

  • Tilakaratne N, Friedman E (1996) Genomic responses to 5-HT1A or 5-HT2A/2C receptor activation is differentially regulated in four regions of rat brain. Eur J Pharmacol 307:211–217

    Article  PubMed  CAS  Google Scholar 

  • Tsoory MM, Vouimba RM, Akirav I, Kavushansky A, Avital A, Richter-Levin G (2008) Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD. Prog Brain Res 167:35–51

    Article  PubMed  CAS  Google Scholar 

  • Uneyama H, Munakata M, Akaike N (1992) 5-HT response of rat hippocampal pyramidal cell bodies. NeuroReport 3:633–636

    Article  PubMed  CAS  Google Scholar 

  • Wang RY, Arvanov VL (1998) M100907, a highly selective 5-HT2A receptor antagonist and potential atypical antipsychotic drug, facilitates induction of long-term potentiation in area CA1 of the rat hippocampal slice. Brain Res 779:309–313

    Article  PubMed  CAS  Google Scholar 

  • Whalen PJ, Phelps EA (2009) The human amygdala. The Guilford Press, New York

    Google Scholar 

  • Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 635–704

    Google Scholar 

  • Woodruff AR, Sah P (2007) Network of parvalbumin-positive interneurons in the basolateral amygdala. J Neurosci 27:553–563

    Article  PubMed  CAS  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A,1C, and2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Pandey SC (2000) Cellular localization of serotonin2A (5-HT2A) receptors in the rat brain. Brain Res Bull 51:499–505

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Ásgeirsdóttir HN, Cohen SJ, Munchow AH, Barrera MP, Stackman RW Jr (2013) Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6 J mice. Neuropharmacology 64:403–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristiano Bombardi or Giuseppe Di Giovanni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bombardi, C., Di Giovanni, G. Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230, 427–439 (2013). https://doi.org/10.1007/s00221-013-3512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3512-6

Keywords

Navigation