Skip to main content
Log in

Dopaminergic innervation and modulation of hippocampal networks

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue “Hippocampal structure and function,” we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham WC (2008) Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci 9(5):387

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Zoli M, Stromberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69(3):711–726

    Article  PubMed  CAS  Google Scholar 

  • Ahmed T, Blum D, Burnouf S, Demeyer D, Buee-Scherrer V, D’Hooge R, Buee L, Balschun D (2015) Rescue of impaired late-phase long-term depression in a tau transgenic mouse model. Neurobiol Aging 36(2):730–739

    Article  PubMed  CAS  Google Scholar 

  • Ambree O, Richter H, Sachser N, Lewejohann L, Dere E, de Souza Silva MA, Herring A, Keyvani K, Paulus W, Schabitz WR (2009) Levodopa ameliorates learning and memory deficits in a murine model of Alzheimer’s disease. Neurobiol Aging 30(8):1192–1204

    Article  PubMed  CAS  Google Scholar 

  • Amenta F, Mignini F, Ricci A, Sabbatini M, Tomassoni D, Tayebati SK (2001) Age-related changes of dopamine receptors in the rat hippocampus: a light microscope autoradiography study. Mech Ageing Dev 122(16):2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Andersson R, Johnston A, Fisahn A (2012) Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons. PLoS One 7(7):e40906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Astori S, Pawlak V, Kohr G (2010) Spike-timing-dependent plasticity in hippocampal CA3 neurons. J Physiol 588(Pt 22):4475–4488

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Babiec WE, Jami SA, Guglietta R, Chen PB, O’Dell TJ (2017) Differential regulation of NMDA receptor-mediated transmission by SK channels underlies dorsal-ventral differences in dynamics of Schaffer collateral synaptic function. J Neurosci 37(7):1950–1964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bagot RC, Parise EM, Pena CJ, Zhang HX, Maze I, Chaudhury D, Persaud B, Cachope R, Bolanos-Guzman CA, Cheer JF, Deisseroth K, Han MH, Nestler EJ (2015) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun 6:7062

    Article  PubMed  CAS  Google Scholar 

  • Ballarini F, Moncada D, Martinez MC, Alen N, Viola H (2009) Behavioral tagging is a general mechanism of long-term memory formation. Proc Natl Acad Sci U S A 106(34):14599–14604

    Article  PubMed  PubMed Central  Google Scholar 

  • Barreiro-Iglesias A, Villar-Cervino V, Anadon R, Rodicio MC (2009) Dopamine and gamma-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J Anat 215(6):601–610

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baulac M, Verney C, Berger B (1986) Dopaminergic innervation of the parahippocampal and hippocampal regions in the rat. Rev Neurol (Paris) 142(12):895–905

    CAS  Google Scholar 

  • Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217

    Article  PubMed  CAS  Google Scholar 

  • Beer Z, Chwiesko C, Sauvage MM (2014) Processing of spatial and non-spatial information reveals functional homogeneity along the dorso-ventral axis of CA3, but not CA1. Neurobiol Learn Mem 111:56–64

    Article  PubMed  Google Scholar 

  • Benardo LS, Prince DA (1982) Dopamine modulates a Ca2+-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 297(5861):76–79

    Article  PubMed  CAS  Google Scholar 

  • Bender KJ, Ford CP, Trussell LO (2010) Dopaminergic modulation of axon initial segment calcium channels regulates action potential initiation. Neuron 68(3):500–511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15(12):7821–7836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berretta N, Berton F, Bianchi R, Capogna M, Francesconi W, Brunelli M (1990) Effects of dopamine, D-1 and D-2 dopaminergic agonists on the excitability of hippocampal CA1 pyramidal cells in guinea pig. Exp Brain Res 83(1):124–130

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci 24:139–166.

    Article  PubMed  CAS  Google Scholar 

  • Billard JM (2010) Long-term depression in the hippocampal CA1 area of aged rats, revisited: contribution of temporal constraints related to slice preparation. PLoS One 5(3):e9843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bliss TV, Cooke SF (2011) Long-term potentiation and long-term depression: a clinical perspective. Clinics (Sao Paulo) 66(Suppl 1):3–17

    Article  Google Scholar 

  • Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K (2015) The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Philos Trans R Soc Lond Ser B Biol Sci 370(1672)

  • Broussard JI, Jenson D, Dani JA (2012) Dopaminergic influence over hippocampal synaptic plasticity and function. Clin Exp Pharmacol 2(3):e108

    Article  Google Scholar 

  • Broussard JI, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F, Garcia I, Arenkiel BR, Zhou FM, De Biasi M, Dani JA (2016) Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Rep 14(8):1930–1939

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brzosko Z, Schultz W, Paulsen O (2015) Retroactive modulation of spike timing-dependent plasticity by dopamine. elife 4:e09685

    Article  PubMed  PubMed Central  Google Scholar 

  • Brzosko Z, Zannone S, Schultz W, Clopath C, Paulsen O (2017) Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. elife 6:e27756

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchanan KA, Mellor JR (2010) The activity requirements for spike timing-dependent plasticity in the hippocampus. Front Synaptic. Neurosci 2:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Calabresi P, Ghiglieri V, Mazzocchetti P, Corbelli I, Picconi B (2015) Levodopa-induced plasticity: a double-edged sword in Parkinson’s disease? Philos Trans R Soc Lond Ser B Biol Sci 370(1672)

  • Campanac E, Debanne D (2008) Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons. J Physiol 586(3):779–793

    Article  PubMed  CAS  Google Scholar 

  • Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA (1997) Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 17(19):7330–7338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46

    Article  PubMed  CAS  Google Scholar 

  • Cepeda C, Murphy KP, Parent M, Levine MS (2014) The role of dopamine in Huntington’s disease. Prog Brain Res 211:235–254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Charuchinda C, Supavilai P, Karobath M, Palacios JM (1987) Dopamine D2 receptors in the rat brain: autoradiographic visualization using a high-affinity selective agonist ligand. J Neurosci 7(5):1352–1360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Z, Fujii S, Ito K, Kato H, Kaneko K, Miyakawa H (1995) Activation of dopamine D1 receptors enhances long-term depression of synaptic transmission induced by low frequency stimulation in rat hippocampal CA1 neurons. Neurosci Lett 188(3):195–198

    Article  PubMed  CAS  Google Scholar 

  • Chu HY, Wu Q, Zhou S, Cao X, Zhang A, Jin GZ, Hu GY, Zhen X (2011) SKF83959 suppresses excitatory synaptic transmission in rat hippocampus via a dopamine receptor-independent mechanism. J Neurosci Res 89(8):1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Chuhma N, Mingote S, Kalmbach A, Yetnikoff L, Rayport S (2017) Heterogeneity in dopamine neuron synaptic actions across the striatum and its relevance for schizophrenia. Biol Psychiatry 81(1):43–51

    Article  PubMed  CAS  Google Scholar 

  • Ciliax BJ, Nash N, Heilman C, Sunahara R, Hartney A, Tiberi M, Rye DB, Caron MG, Niznik HB, Levey AI (2000) Dopamine D(5) receptor immunolocalization in rat and monkey brain. Synapse 37(2):125–145

    Article  PubMed  CAS  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41

    Article  PubMed  Google Scholar 

  • Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473

    Article  PubMed  CAS  Google Scholar 

  • Connor SA, Wang YT (2015) A place at the table: LTD as a mediator of memory genesis. Neuroscientist 22(4):359–371

    Article  PubMed  CAS  Google Scholar 

  • Connor SA, Wang YT, Nguyen PV (2011) Activation of {beta}-adrenergic receptors facilitates heterosynaptic translation-dependent long-term potentiation. J Physiol 589(17):4321–4340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Costa RP, Mizusaki BE, Sjostrom PJ, van Rossum MC (2017) Functional consequences of pre- and postsynaptic expression of synaptic plasticity. Philos Trans R Soc Lond Ser B Biol Sci 372(1715):20160153

    Article  CAS  Google Scholar 

  • Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86(3):1033–1048

    Article  PubMed  Google Scholar 

  • Danielson NB, Zaremba JD, Kaifosh P, Bowler J, Ladow M, Losonczy A (2016) Sublayer-specific coding dynamics during spatial navigation and learning in hippocampal area CA1. Neuron 91(3):652–665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Souza Caetano KA, de Oliveira AR, Brandao ML (2013) Dopamine D2 receptors modulate the expression of contextual conditioned fear: role of the ventral tegmental area and the basolateral amygdala. Behav Pharmacol 24(4):264–274

    Article  PubMed  CAS  Google Scholar 

  • Defagot MC, Malchiodi EL, Villar MJ, Antonelli MC (1997) Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies. Brain Res Mol Brain Res 45(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Defagot MC, Falzone TL, Low MJ, Grandy DK, Rubinstein M, Antonelli MC (2000) Quantitative analysis of the dopamine D4 receptor in the mouse brain. J Neurosci Res 59(2):202–208

    Article  PubMed  CAS  Google Scholar 

  • Duguid I, Sjostrom PJ (2006) Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 16(3):312–322

    Article  PubMed  CAS  Google Scholar 

  • Edelmann E, Lessmann V (2011) Dopamine modulates spike timing-dependent plasticity and action potential properties in CA1 pyramidal neurons of acute rat hippocampal slices. Front Synaptic. Neurosci 3:6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Edelmann E, Lessmann V (2013) Dopamine regulates intrinsic excitability thereby gating successful induction of spike timing-dependent plasticity in CA1 of the hippocampus. Front Neurosci 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Edelmann E, Lessmann V, Brigadski T (2014) Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76 Pt C:610–627

    Article  PubMed  CAS  Google Scholar 

  • Edelmann E, Cepeda-Prado E, Franck M, Lichtenecker P, Brigadski T, Lessmann V (2015) Theta burst firing recruits BDNF release and signaling in postsynaptic CA1 neurons in spike-timing-dependent LTP. Neuron 86(4):1041–1054

    Article  PubMed  CAS  Google Scholar 

  • Edelmann E, Cepeda-Prado E, Lessmann V (2017) Coexistence of multiple types of synaptic plasticity in individual hippocampal CA1 pyramidal neurons. Front Synaptic Neurosci 9:7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Eichenbaum H (2017) Memory: organization and control. Annu Rev Psychol 68:19–45

    Article  PubMed  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fiorentini C, Savoia P, Savoldi D, Missale C (2013) Receptor heteromers in Parkinson’s disease and L-DOPA-induced dyskinesia. CNS Neurol Disord Drug Targets 12(8):1101–1113

    PubMed  CAS  Google Scholar 

  • Fitzjohn S, Bashir Z, Farrow P (2016) Group I mGluR induced LTD of NMDAR-synaptic transmission at the Schaffer collateral but not Temperoammonic input to CA1. Curr Neuropharmacol 14(5):435–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fortin GM, Bourque MJ, Mendez JA, Leo D, Nordenankar K, Birgner C, Arvidsson E, Rymar VV, Berube-Carriere N, Claveau AM, Descarries L, Sadikot AF, Wallen-Mackenzie A, Trudeau LE (2012) Glutamate corelease promotes growth and survival of midbrain dopamine neurons. J Neurosci 32(48):17477–17491

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frey U, Morris RG (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21(5):181–188

    Article  PubMed  CAS  Google Scholar 

  • Frey U, Matthies H, Reymann KG, Matthies H (1991) The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro. Neurosci Lett 129(1):111–114

    Article  PubMed  CAS  Google Scholar 

  • Gangarossa G, Longueville S, De Bundel D, Perroy J, Herve D, Girault JA, Valjent E (2012) Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22(12):2199–2207

    Article  PubMed  CAS  Google Scholar 

  • Gangarossa G, Ceolin L, Paucard A, Lerner-Natoli M, Perroy J, Fagni L, Valjent E (2014) Repeated stimulation of dopamine D1-like receptor and hyperactivation of mTOR signaling lead to generalized seizures, altered dentate gyrus plasticity, and memory deficits. Hippocampus 24(12):1466–1481

    Article  PubMed  CAS  Google Scholar 

  • Gasbarri A, Packard MG, Campana E, Pacitti C (1994a) Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res Bull 33(4):445–452

    Article  PubMed  CAS  Google Scholar 

  • Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994b) Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668(1–2):71–79

    Article  PubMed  Google Scholar 

  • Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 21(1):1–22

    Article  CAS  Google Scholar 

  • Ghanbarian E, Motamedi F (2013) Ventral tegmental area inactivation suppresses the expression of CA1 long term potentiation in anesthetized rat. PLoS One 8(3):e58844

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grace AA (2012) Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 62(3):1342–1348

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff VK, Ashe JH (1984) Modulation by dopamine of population responses and cell membrane properties of hippocampal CA1 neurons in vitro. Brain Res 292(2):327–338

    Article  PubMed  CAS  Google Scholar 

  • Grilli M, Nisoli E, Memo M, Missale C, Spano PF (1988) Pharmacological characterization of D1 and D2 dopamine receptors in rat limbocortical areas. II. Dorsal hippocampus. Neurosci Lett 87(3):253–258

    Article  PubMed  CAS  Google Scholar 

  • Gunaydin LA, Kreitzer AC (2016) Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol 78:327–350

    Article  PubMed  CAS  Google Scholar 

  • Hagena H, Manahan-Vaughan D (2013) Differentiation in the protein synthesis-dependency of persistent synaptic plasticity in mossy fiber and associational/commissural CA3 synapses in vivo. Front Integr Neurosci 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagena H, Manahan-Vaughan D (2016) Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial learning. Front Synaptic Neurosci 8:31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hamilton TJ, Wheatley BM, Sinclair DB, Bachmann M, Larkum ME, Colmers WF (2010) Dopamine modulates synaptic plasticity in dendrites of rat and human dentate granule cells. Proc Natl Acad Sci U S A 107(42):18185–18190

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammad H, Wagner JJ (2006) Dopamine-mediated disinhibition in the CA1 region of rat hippocampus via D3 receptor activation. J Pharmacol Exp Ther 316(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Han EB, Heinemann SF (2013) Distal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs. J Neurosci 33(4):1314–1325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hansen N (2017) The longevity of hippocampus-dependent memory is orchestrated by the locus Coeruleus-noradrenergic system. Neural Plast 2017:2727602

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen N, Manahan-Vaughan D (2014) Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 24(4):845–858

    Article  PubMed  Google Scholar 

  • He K, Huertas M, Hong SZ, Tie X, Hell JW, Shouval H, Kirkwood A (2015) Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88(3):528–538

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65(5):643–656

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoffman DA, Johnston D (1999) Neuromodulation of dendritic action potentials. J Neurophysiol 81(1):408–411

    Article  PubMed  CAS  Google Scholar 

  • Hortnagl H, Berger ML, Sperk G, Pifl C (1991) Regional heterogeneity in the distribution of neurotransmitter markers in the rat hippocampus. Neuroscience 45(2):261–272

    Article  PubMed  CAS  Google Scholar 

  • Hsu KS (1996) Characterization of dopamine receptors mediating inhibition of excitatory synaptic transmission in the rat hippocampal slice. J Neurophysiol 76(3):1887–1895

    Article  PubMed  CAS  Google Scholar 

  • Huang EP (1998) Synaptic plasticity: going through phases with LTP. Curr Biol 8(10):R350–R352

    Article  PubMed  CAS  Google Scholar 

  • Huang YY, Kandel ER (1995) D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci U S A 92(7):2446–2450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang Q, Zhou D, Chase K, Gusella JF, Aronin N, DiFiglia M (1992) Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc Natl Acad Sci U S A 89(24):11988–11992

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang S, Trevino M, He K, Ardiles A, Pasquale R, Guo Y, Palacios A, Huganir R, Kirkwood A (2012) Pull-push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Neuron 73(3):497–510

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang YY, Levine A, Kandel DB, Yin D, Colnaghi L, Drisaldi B, Kandel ER (2014) D1/D5 receptors and histone deacetylation mediate the gateway effect of LTP in hippocampal dentate gyrus. Learn Mem 21(3):153–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ishikawa K, Ott T, McGaugh JL (1982) Evidence for dopamine as a transmitter in dorsal hippocampus. Brain Res 232(1):222–226

    Article  PubMed  CAS  Google Scholar 

  • Ito HT, Schuman EM (2007) Frequency-dependent gating of synaptic transmission and plasticity by dopamine. Front Neural Circuits 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Izaki Y, Takita M, Nomura M, Akema T (2003) Differences between paired-pulse facilitation and long-term potentiation in the dorsal and ventral hippocampal CA1-prefrontal pathways of rats. Brain Res 992(1):142–145

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68(3):285–316

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Zorumski CF (1999) Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 31(3):196–202

    Article  PubMed  CAS  Google Scholar 

  • Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69(6):375–390

    Article  PubMed  CAS  Google Scholar 

  • Jenson D, Yang K, Acevedo-Rodriguez A, Levine A, Broussard JI, Tang J, Dani JA (2015) Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity. Neuropharmacology 90:23–32

    Article  PubMed  CAS  Google Scholar 

  • Jin LQ, Goswami S, Cai G, Zhen X, Friedman E (2003) SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J Neurochem 85(2):378–386

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Hoffman DA, Colbert CM, Magee JC (1999) Regulation of back-propagating action potentials in hippocampal neurons. Curr Opin Neurobiol 9(3):288–292

    Article  PubMed  CAS  Google Scholar 

  • Kaifosh P, Losonczy A (2016) Mnemonic functions for nonlinear dendritic integration in hippocampal pyramidal circuits. Neuron 90(3):622–634

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kampa BM, Letzkus JJ, Stuart GJ (2007) Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity. Trends Neurosci 30(9):456–463

    Article  PubMed  CAS  Google Scholar 

  • Kemp A, Manahan-Vaughan D (2004) Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc Natl Acad Sci U S A 101(21):8192–8197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kemp A, Manahan-Vaughan D (2007) Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci 30(3):111–118

    Article  PubMed  CAS  Google Scholar 

  • Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER (2016) Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A 113(51):14835–14840

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kemppainen N, Laine M, Laakso MP, Kaasinen V, Nagren K, Vahlberg T, Kurki T, Rinne JO (2003) Hippocampal dopamine D2 receptors correlate with memory functions in Alzheimer’s disease. Eur J Neurosci 18(1):149–154

    Article  PubMed  CAS  Google Scholar 

  • Kerr AM, Jonas P (2008) The two sides of hippocampal mossy fiber plasticity. Neuron 57(1):5–7

    Article  PubMed  CAS  Google Scholar 

  • Khan ZU, Gutierrez A, Martin R, Penafiel A, Rivera A, de la Calle A (2000) Dopamine D5 receptors of rat and human brain. Neuroscience 100(4):689–699

    Article  PubMed  CAS  Google Scholar 

  • Kulla A, Manahan-Vaughan D (2000) Depotentiation in the dentate gyrus of freely moving rats is modulated by D1/D5 dopamine receptors. Cereb Cortex 10(6):614–620

    Article  PubMed  CAS  Google Scholar 

  • Kusuki T, Imahori Y, Ueda S, Inokuchi K (1997) Dopaminergic modulation of LTP induction in the dentate gyrus of intact brain. Neuroreport 8(8):2037–2040

    Article  PubMed  CAS  Google Scholar 

  • Lanore F, Rebola N, Carta M (2009) Spike-timing-dependent plasticity induces presynaptic changes at immature hippocampal mossy fiber synapses. J Neurosci 29(26):8299–8301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lapish CC, Seamans JK, Chandler LJ (2006) Glutamate-dopamine cotransmission and reward processing in addiction. Alcohol Clin Exp Res 30(9):1451–1465

    Article  PubMed  CAS  Google Scholar 

  • Larson J, Munkacsy E (2015) Theta-burst LTP. Brain Res 1621:38–50

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  PubMed  CAS  Google Scholar 

  • Lenz D, Krauel K, Schadow J, Baving L, Duzel E, Herrmann CS (2008) Enhanced gamma-band activity in ADHD patients lacks correlation with memory performance found in healthy children. Brain Res 1235:117–132

    Article  PubMed  CAS  Google Scholar 

  • Levy F (2004) Synaptic gating and ADHD: a biological theory of comorbidity of ADHD and anxiety. Neuropsychopharmacology 29(9):1589–1596

    Article  PubMed  CAS  Google Scholar 

  • Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6(5):526–531

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S (2014) Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb Cortex 24(2):353–363

    Article  PubMed  Google Scholar 

  • Li SB, Du D, Hasan MT, Kohr G (2016) D4 receptor activation differentially modulates hippocampal basal and apical dendritic synapses in freely moving mice. Cereb Cortex 26(2):647–655

    PubMed  Google Scholar 

  • Li Q, Navakkode S, Rothkegel M, Soong TW, Sajikumar S, Korte M (2017) Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer’s disease. Proc Natl Acad Sci U S A 114(21):5527–5532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin YW, Yang HW, Wang HJ, Gong CL, Chiu TH, Min MY (2006) Spike-timing-dependent plasticity at resting and conditioned lateral perforant path synapses on granule cells in the dentate gyrus: different roles of N-methyl-D-aspartate and group I metabotropic glutamate receptors. Eur J Neurosci 23(9):2362–2374

    Article  PubMed  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46(5):703–713

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Wang W, Wang F, Cai F, Hu ZL, Yang YJ, Chen J, Chen JG (2009) Phosphatidylinositol-linked novel D(1) dopamine receptor facilitates long-term depression in rat hippocampal CA1 synapses. Neuropharmacology 57(2):164–171

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Cui L, Schwarz MK, Dong Y, Schluter OM (2017) Adrenergic gate release for spike timing-dependent synaptic potentiation. Neuron 93(2):394–408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lodge DJ, Grace AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32(9):507–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lomo T (2017) Discovering long-term potentiation (LTP)—recollections and Reflections on what came after. Acta Physiol 222(2):1–22

    Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JF, Jackson MF, Beazely MA (2007) G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. Biochim Biophys Acta 1768(4):941–951

    Article  PubMed  CAS  Google Scholar 

  • Maggio R, Aloisi G, Silvano E, Rossi M, Millan MJ (2009) Heterodimerization of dopamine receptors: new insights into functional and therapeutic significance. Parkinsonism Relat Disord 15(Suppl 4):S2–S7

    Article  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1986) Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal CA1 pyramidal cells. Brain Res 379(2):210–215

    Article  PubMed  CAS  Google Scholar 

  • Malik R, Johnston D (2017) Dendritic GIRK channels gate the integration window, plateau potentials, and induction of synaptic plasticity in dorsal but not ventral CA1 neurons. J Neurosci 37(14):3940–3955

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Gerstner W, Sjostrom PJ (2011) A history of spike-timing-dependent plasticity. Front Synaptic. Neurosci 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Markram H, Gerstner W, Sjostrom PJ (2012) Spike-timing-dependent plasticity: a comprehensive overview. Front Synaptic Neurosci 4:2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marshall FH (2001) Heterodimerization of G-protein-coupled receptors in the CNS. Curr Opin Pharmacol 1(1):40–44

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  PubMed  CAS  Google Scholar 

  • Mayford M, Siegelbaum SA, Kandel ER (2012) Synapses and memory storage. Cold Spring Harb Perspect Biol 4(6)

  • McNamara CG, Dupret D (2017) Two sources of dopamine for the hippocampus. Trends Neurosci 40(7):383–384

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Medin T, Owe SG, Rinholm JE, Larsson M, Sagvolden T, Storm-Mathisen J, Bergersen LH (2011) Dopamine D5 receptors are localized at asymmetric synapses in the rat hippocampus. Neuroscience 192:164–171

    Article  PubMed  CAS  Google Scholar 

  • Medin T, Rinholm JE, Owe SG, Sagvolden T, Gjedde A, Storm-Mathisen J, Bergersen LH (2013) Low dopamine D5 receptor density in hippocampus in an animal model of attention-deficit/hyperactivity disorder (ADHD). Neuroscience 242:11–20

    Article  PubMed  CAS  Google Scholar 

  • Menezes J, Alves N, Borges S, Roehrs R, de Carvalho Myskiw J, Furini CR, Izquierdo I, Mello-Carpes PB (2015) Facilitation of fear extinction by novelty depends on dopamine acting on D1-subtype dopamine receptors in hippocampus. Proc Natl Acad Sci U S A 112(13):E1652–E1658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Micale V, Stepan J, Jurik A, Pamplona FA, Marsch R, Drago F, Eder M, Wotjak CT (2017) Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J Psychiatr Res 90:46–59

    Article  PubMed  Google Scholar 

  • Milior G, Di Castro MA, Sciarria LP, Garofalo S, Branchi I, Ragozzino D, Limatola C, Maggi L (2016) Electrophysiological properties of CA1 pyramidal neurons along the longitudinal Axis of the mouse hippocampus. Sci Rep 6:38242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyauchi M, Neugebauer NM, Meltzer HY (2017) Dopamine D4 receptor stimulation contributes to novel object recognition: relevance to cognitive impairment in schizophrenia. J Psychopharmacol 31(4):442–452

    Article  PubMed  CAS  Google Scholar 

  • Mockett BG, Hulme SR (2008) Metaplasticity: new insights through electrophysiological investigations. J Integr Neurosci 7(2):315–336

    Article  PubMed  Google Scholar 

  • Mockett BG, Brooks WM, Tate WP, Abraham WC (2004) Dopamine D1/D5 receptor activation fails to initiate an activity-independent late-phase LTP in rat hippocampus. Brain Res 1021(1):92–100

    Article  PubMed  CAS  Google Scholar 

  • Moncada D (2017) Evidence of VTA and LC control of protein synthesis required for the behavioral tagging process. Neurobiol Learn Mem 138:226–237

    Article  PubMed  CAS  Google Scholar 

  • Moncada D, Viola H (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: evidence for a behavioral tagging. J Neurosci 27(28):7476–7481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moncada D, Ballarini F, Viola H (2015) Behavioral tagging: a translation of the synaptic tagging and capture hypothesis. Neural Plast 2015:650780

    Article  PubMed  PubMed Central  Google Scholar 

  • Moudy AM, Kunkel DD, Schwartzkroin PA (1993) Development of dopamine-beta-hydroxylase-positive fiber innervation of the rat hippocampus. Synapse 15(4):307–318

    Article  PubMed  CAS  Google Scholar 

  • Nakamura NH, Flasbeck V, Maingret N, Kitsukawa T, Sauvage MM (2013) Proximodistal segregation of nonspatial information in CA3: preferential recruitment of a proximal CA3-distal CA1 network in nonspatial recognition memory. J Neurosci 33(28):11506–11514

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6(11):863–876

    Article  PubMed  CAS  Google Scholar 

  • Nomoto M, Ohkawa N, Nishizono H, Yokose J, Suzuki A, Matsuo M, Tsujimura S, Takahashi Y, Nagase M, Watabe AM, Kato F, Inokuchi K (2016) Cellular tagging as a neural network mechanism for behavioural tagging. Nat Commun 7:12319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ntamati NR, Luscher C (2016) VTA projection neurons releasing GABA and glutamate in the dentate gyrus. eNeuro 3(4):e0137–16.2016

    Article  Google Scholar 

  • Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H (2014) Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 275:404–419

    Article  PubMed  CAS  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll CM, Martin SJ, Sandin J, Frenguelli B, Morris RG (2006) Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learn Mem 13(6):760–769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • O’Dell TJ, Connor SA, Guglietta R, Nguyen PV (2015) Beta-adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn Mem 22(9):461–471

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Otmakhova NA, Lisman JE (1996) D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J Neurosci 16(23):7478–7486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Otmakhova NA, Lisman JE (1998) D1/D5 dopamine receptors inhibit depotentiation at CA1 synapses via cAMP-dependent mechanism. J Neurosci 18(4):1270–1279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Otmakhova NA, Lisman JE (1999) Dopamine selectively inhibits the direct cortical pathway to the CA1 hippocampal region. J Neurosci 19(4):1437–1445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pacheco MA, Jope RS (1997) Comparison of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis in postmortem human brain membranes and characterization of stimulation by dopamine D1 receptors. J Neurochem 69(2):639–644

    Article  PubMed  CAS  Google Scholar 

  • Panchalingam S, Undie AS (2001) SKF83959 exhibits biochemical agonism by stimulating [(35)S]GTP gamma S binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 40(6):826–837

    Article  PubMed  CAS  Google Scholar 

  • Papatheodoropoulos C, Kouvaros S (2016) High-frequency stimulation-induced synaptic potentiation in dorsal and ventral CA1 hippocampal synapses: the involvement of NMDA receptors, mGluR5, and (L-type) voltage-gated calcium channels. Learn Mem 23(9):460–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pawlak V, Wickens JR, Kirkwood A, Kerr JND (2010) Timing is not everything: neuromodulation opens the STDP gate. Frontiers in Synaptic Neuroscience 2(146):1–14

    Google Scholar 

  • Pedarzani P, Storm JF (1995) Dopamine modulates the slow Ca(2+)-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons. J Neurophysiol 74(6):2749–2753

    Article  PubMed  CAS  Google Scholar 

  • Perreault ML, Hasbi A, O’Dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39(1):156–168

    Article  PubMed  CAS  Google Scholar 

  • Petersen AV, Jensen CS, Crepel V, Falkerslev M, Perrier JF (2017) Serotonin regulates the firing of principal cells of the subiculum by inhibiting a T-type Ca2+ current. Front Cell Neurosci 11:60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pinar C, Fontaine CJ, Trivino-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR (2017) Revisiting the flip side: long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 80:394–413

    Article  PubMed  Google Scholar 

  • Pockett S (1985) Dopamine changes the shape of action potentials in hippocampal pyramidal cells. Brain Res 342(2):386–390

    Article  PubMed  CAS  Google Scholar 

  • Pohle W, Ott T, Muller-Welde P (1984) Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J Hirnforsch 25(1):1–10

    PubMed  CAS  Google Scholar 

  • Prince LY, Bacon TJ, Tigaret CM, Mellor JR (2016) Neuromodulation of the feedforward dentate gyrus-CA3 microcircuit. Front Synaptic Neurosci 8:32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Puighermanal E, Cutando L, Boubaker-Vitre J, Honore E, Longueville S, Herve D, Valjent E (2017) Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct 222(4):1897–1911

    Article  PubMed  CAS  Google Scholar 

  • Redondo RL, Morris RG (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12(1):17–30

    Article  PubMed  CAS  Google Scholar 

  • Reymann K, Pohle W, Muller-Welde P, Ott T (1983) Dopaminergic innervation of the hippocampus: evidence for midbrain raphe neurons as the site of origin. Biomed Biochim Acta 42(10):1247–1255

    PubMed  CAS  Google Scholar 

  • Rice ME, Patel JC (2015) Somatodendritic dopamine release: recent mechanistic insights. Philos Trans R Soc Lond B Biol Sci 370(1672):20140185

    Article  CAS  Google Scholar 

  • Rocchetti J, Isingrini E, Dal BG, Sagheby S, Menegaux A, Tronche F, Levesque D, Moquin L, Gratton A, Wong TP, Rubinstein M, Giros B (2015) Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol Psychiatry 77(6):513–525

    Article  PubMed  CAS  Google Scholar 

  • Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ (2014) Synaptic tagging during memory allocation. Nat Rev Neurosci 15(3):157–169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roggenhofer E, Fidzinski P, Bartsch J, Kurz F, Shor O, Behr J (2010) Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses. Eur J Neurosci 32(4):598–605

    Article  PubMed  Google Scholar 

  • Romo-Parra H, Aceves J, Gutierrez R (2005) Tonic modulation of inhibition by dopamine D4 receptors in the rat hippocampus. Hippocampus 15(2):254–259

    Article  PubMed  CAS  Google Scholar 

  • Rosen ZB, Cheung S, Siegelbaum SA (2015) Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci 18(12):1763–1771

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz JA, Johnston D (2006) Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci 26(12):3229–3244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325(5943):1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14(9):609–625

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar S, Navakkode S, Frey JU (2007) Identification of compartment- and process-specific molecules required for synaptic “tagging” during long-term potentiation and long-term depression in hippocampal CA1. J Neurosci 27(19):5068–5080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samson Y, Wu JJ, Friedman AH, Davis JN (1990) Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. J Comp Neurol 298(2):250–263

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Simon H, Le Moal M, Bischoff S (1980) Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett 18(2):125–131

    Article  PubMed  CAS  Google Scholar 

  • Schilstrom B, Yaka R, Argilli E, Suvarna N, Schumann J, Chen BT, Carman M, Singh V, Mailliard WS, Ron D, Bonci A (2006) Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors. J Neurosci 26(33):8549–8558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schreurs A, Sabanov V, Balschun D (2017) Distinct properties of long-term potentiation in the dentate gyrus along the Dorsoventral Axis: influence of age and inhibition. Sci Rep 7(1):5157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schultz W (1999) The reward signal of midbrain dopamine neurons. News Physiol Sci 14:249–255

    PubMed  CAS  Google Scholar 

  • Seol GH, Ziburkus J, Huang S, Song L, Kim IT, Takamiya K, Huganir RL, Lee HK, Kirkwood A (2007) Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55(6):919–929

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shivarama Shetty M, Sajikumar S (2017) ‘Tagging’ along memories in aging: synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 35:22–35

    Article  PubMed  Google Scholar 

  • Shohamy D, Adcock RA (2010) Dopamine and adaptive memory. Trends Cogn Sci 14(10):464–472

    Article  PubMed  CAS  Google Scholar 

  • Sigala S, Missale C, Spano P (1997) Opposite effects of dopamine D2 and D3 receptors on learning and memory in the rat. Eur J Pharmacol 336(2–3):107–112

    Article  PubMed  CAS  Google Scholar 

  • Sil’kis IG (2008) The role of dopamine-dependent negative feedback in the hippocampus-basal ganglia-thalamus-hippocampus loop in the extinction of responses. Neurosci Behav Physiol 38(4):399–405

    Article  PubMed  Google Scholar 

  • Sivakumaran S, Mohajerani MH, Cherubini E (2009) At immature mossy-fiber-CA3 synapses, correlated presynaptic and postsynaptic activity persistently enhances GABA release and network excitability via BDNF and cAMP-dependent PKA. J Neurosci 29(8):2637–2647

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith CC, Greene RW (2012) CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci 32(18):6072–6080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith WB, Starck SR, Roberts RW, Schuman EM (2005) Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron 45(5):765–779

    Article  PubMed  CAS  Google Scholar 

  • Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15(10):655–669

    Article  PubMed  CAS  Google Scholar 

  • Straube T, Korz V, Frey JU (2003) Bidirectional modulation of long-term potentiation by novelty-exploration in rat dentate gyrus. Neurosci Lett 344(1):5–8

    Article  PubMed  CAS  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30(24):8229–8233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sugisaki E, Fukushima Y, Tsukada M, Aihara T (2011) Cholinergic modulation on spike timing-dependent plasticity in hippocampal CA1 network. Neuroscience 192:91–101

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Rayport S (2000) Dale’s principle and glutamate corelease from ventral midbrain dopamine neurons. Amino Acids 19(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353

    Article  PubMed  CAS  Google Scholar 

  • Swanson-Park JL, Coussens CM, Mason-Parker SE, Raymond CR, Hargreaves EL, Dragunow M, Cohen AS, Abraham WC (1999) A double dissociation within the hippocampus of dopamine D1/D5 receptor and beta-adrenergic receptor contributions to the persistence of long-term potentiation. Neuroscience 92(2):485–497

    Article  PubMed  CAS  Google Scholar 

  • Swant J, Wagner JJ (2006) Dopamine transporter blockade increases LTP in the CA1 region of the rat hippocampus via activation of the D3 dopamine receptor. Learn Mem 13(2):161–167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sweatt JD (1999) Toward a molecular explanation for long-term potentiation. Learn Mem 6(5):399–416

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, Smith CC, Fernandez G, Deisseroth K, Greene RW, Morris RG (2016) Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537(7620):357–362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takkala P, Woodin MA (2013) Muscarinic acetylcholine receptor activation prevents disinhibition-mediated LTP in the hippocampus. Front Cell Neurosci 7:16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tarazi FI, Kula NS, Baldessarini RJ (1997) Regional distribution of dopamine D4 receptors in rat forebrain. Neuroreport 8(16):3423–3426

    Article  PubMed  CAS  Google Scholar 

  • Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW (2007) LTP and adaptation to inactivity: overlapping mechanisms and implications for metaplasticity. Neuropharmacology 52(1):156–175

    Article  PubMed  CAS  Google Scholar 

  • Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76(1):33–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • van Wieringen JP, Booij J, Shalgunov V, Elsinga P, Michel MC (2013) Agonist high- and low-affinity states of dopamine D(2) receptors: methods of detection and clinical implications. Naunyn Schmiedeberg’s Arch Pharmacol 386(2):135–154

    Article  CAS  Google Scholar 

  • Vanhoose AM, Winder DG (2003) NMDA and beta1-adrenergic receptors differentially signal phosphorylation of glutamate receptor type 1 in area CA1 of hippocampus. J Neurosci 23(13):5827–5834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Varela JA, Hirsch SJ, Chapman D, Leverich LS, Greene RW (2009) D1/D5 modulation of synaptic NMDA receptor currents. J Neurosci 29(10):3109–3119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985) Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14(4):1039–1052

    Article  PubMed  CAS  Google Scholar 

  • Vishnoi S, Raisuddin S, Parvez S (2016) Behavioral tagging: a novel model for studying long-term memory. Neurosci Biobehav Rev 68:361–369

    Article  PubMed  Google Scholar 

  • Wagner JJ, Alger BE (1996) Homosynaptic LTD and depotentiation: do they differ in name only? Hippocampus 6(1):24–29

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Ma T, Cheng Y, Huang CCY, Wang X, Lu J, Wang J (2017) Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict Biol. https://doi.org/10.1111/adb.12512

  • Wiescholleck V, Manahan-Vaughan D (2014) Antagonism of D1/D5 receptors prevents long-term depression (LTD) and learning-facilitated LTD at the perforant path-dentate gyrus synapse in freely behaving rats. Hippocampus 24(12):1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1997) The dopamine hypothesis of schizophrenia: current status, future prospects. Int Clin Psychopharmacol 12(6):297–308

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Xiao H, Sun H, Zou L, Zhu LQ (2012) Role of dopamine receptors in ADHD: a systematic meta-analysis. Mol Neurobiol 45(3):605–620

    Article  PubMed  CAS  Google Scholar 

  • Xiang PY, Janc O, Grochowska KM, Kreutz MR, Reymann KG (2016) Dopamine agonists rescue Abeta-induced LTP impairment by Src-family tyrosine kinases. Neurobiol Aging 40:98–102

    Article  CAS  Google Scholar 

  • Yang SN (2000) Sustained enhancement of AMPA receptor- and NMDA receptor-mediated currents induced by dopamine D1/D5 receptor activation in the hippocampus: an essential role of postsynaptic Ca2+. Hippocampus 10(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Dani JA (2014) Dopamine D1 and D5 receptors modulate spike timing-dependent plasticity at medial perforant path to dentate granule cell synapses. J Neurosci 34(48):15888–15897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang K, Broussard JI, Levine AT, Jenson D, Arenkiel BR, Dani JA (2017) Dopamine receptor activity participates in hippocampal synaptic plasticity associated with novel object recognition. Eur J Neurosci 45(1):138–146

    Article  PubMed  Google Scholar 

  • Yao WD, Spealman RD, Zhang J (2008) Dopaminergic signaling in dendritic spines. Biochem Pharmacol 75(11):2055–2069

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yger P, Gilson M (2015) Models of Metaplasticity: a review of concepts. Front Comput Neurosci 9:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JC, Lau PM, Bi GQ (2009) Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci U S A 106(31):13028–13033

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhen X, Goswami S, Friedman E (2005) The role of the phosphatidyinositol-linked D1 dopamine receptor in the pharmacology of SKF83959. Pharmacol Biochem Behav 80(4):597–601

    Article  PubMed  CAS  Google Scholar 

  • Zhou SL, Chu HY, Jin GZ, Cui JM, Zhen XC (2014) Effects of SKF83959 on the excitability of hippocampal CA1 pyramidal neurons: a modeling study. Acta Pharmacol Sin 35(6):738–751

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Funding

Funded by the federal state of Saxony-Anhalt and the “European Regional Developmental Fund” (ERDF 2014-2020), Project: Center for Behavioral Brain Sciences (CBBS) FKS: ZS/2016/04/78113. This work is supported by DFG/SFB779/TP06 and ED 280/1-1.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing, funding acquisition: EE and VL

Corresponding authors

Correspondence to Elke Edelmann or Volkmar Lessmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edelmann, E., Lessmann, V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 373, 711–727 (2018). https://doi.org/10.1007/s00441-018-2800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2800-7

Keywords

Navigation