Skip to main content
Log in

Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

It has been proposed that the subthalamic nucleus (STN) mediates response inhibition and conflict resolution through the fronto-basal ganglia pathways. Our aim was to compare the effects of deep brain stimulation (DBS) of the STN on reactive and proactive inhibition and conflict resolution in Parkinson’s disease using a single task. We used the conditional Stop signal reaction time task that provides the Stop signal reaction time (SSRT) as a measure of reactive inhibition, the response delay effect (RDE) as a measure of proactive inhibition and conflict-induced slowing (CIS) as a measure of conflict resolution. DBS of the STN significantly prolonged SSRT relative to stimulation off. However, while the RDE measure of proactive inhibition was not significantly altered by DBS of the STN, relative to healthy controls, RDE was significantly lower with DBS off but not DBS on. DBS of the STN did not alter the mean CIS but produced a significant differential effect on the slowest and fastest RTs on conflict trials, further prolonging the slowest RTs on the conflict trials relative to DBS off and to controls. These results are the first demonstration, using a single task in the same patient sample, that DBS of the STN produces differential effects on reactive and proactive inhibition and on conflict resolution, suggesting that these effects are likely to be mediated through the impact of STN stimulation on different fronto-basal ganglia pathways: hyperdirect, direct and indirect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aron AR (2011) From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry 69(12):e55–e68. doi:10.1016/j.biopsych.2010.07.024

    Article  PubMed  Google Scholar 

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26(9):2424–2433

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic Resonance imaging (MRI) and functional MRI. J Neurosci 27(14):3743–3752

    Article  PubMed  CAS  Google Scholar 

  • Ballanger B, van Eimeren T, Moro E, Lozano AM, Hamani C, Boulinguez P, Pellecchia G, Houle S, Poon YY, Lang AE, Strafella AP (2009) Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 66(6):817–824. doi:10.1002/ana.21795

    Article  PubMed  Google Scholar 

  • Baunez C, Nieoullon A, Amalric M (1995) In a rat model of Parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J Neurosci 15(10):6531–6541

    PubMed  CAS  Google Scholar 

  • Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    Article  PubMed  CAS  Google Scholar 

  • Brown RG, Dowsey PL, Brown P, Jahanshahi M, Pollak P, Benabid AL, Rodriguez-Oroz MC, Obeso J, Rothwell JC (1999) Impact of deep brain stimulation on upper limb akinesia in Parkinson’s disease. Ann Neurol 45(4):473–488

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, Frank MJ (2011) Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci. doi:10.1038/nn.2925

    Google Scholar 

  • Chen X, Scangos KW, Stuphorn V (2010) Supplementary motor area exerts proactive and reactive control of arm movements. J Neurosci 30(44):14657–14675. doi:10.1523/JNEUROSCI.2669-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Chikazoe J, Jimura K, Hirose S, Yamashita K, Miyashita Y, Konishi S (2009) Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J Neurosci 29(50):15870–15877. doi:10.1523/JNEUROSCI.3645-09.2009

    Article  PubMed  CAS  Google Scholar 

  • De Jong R, Coles MG, Logan GD (1995) Strategies and mechanisms in nonselective and selective inhibitory motor control. J Exp Psychol Hum Percept Perform 21(3):498–511

    Article  PubMed  Google Scholar 

  • Eagle DM, Baunez C, Hutcheson DM, Lehmann O, Shah AP, Robbins TW (2008) Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb Cortex 18(1):178–188

    Article  PubMed  Google Scholar 

  • Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Goldstein M, Clane DB (eds) Recent developments in Parkinson’s disease. Macmillan Healthcare Information, Florham Park, pp 153–163

    Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19(8):1120–1136

    Article  PubMed  Google Scholar 

  • Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism. Science 318(5854):1309–1312. doi:10.1126/science.1146157

    Article  PubMed  CAS  Google Scholar 

  • Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62(7):1110–1114

    Article  PubMed  CAS  Google Scholar 

  • Hershey T, Campbell MC, Videen TO, Lugar HM, Weaver PM, Hartlein J, Karimi M, Tabbal SD, Perlmutter JS (2010) Mapping Go-No-Go performance within the subthalamic nucleus region. Brain. doi:10.1093/brain/awq256

    PubMed  Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  PubMed  CAS  Google Scholar 

  • Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44(4):622–628. doi:10.1002/ana.410440407

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi M, Ardouin CM, Brown RG, Rothwell JC, Obeso J, Albanese A, Rodriguez-Oroz MC, Moro E, Benabid AL, Pollak P, Limousin-Dowsey P (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123(Pt 6):1142–1154

    Article  PubMed  Google Scholar 

  • Jahfari S, Stinear CM, Claffey M, Verbruggen F, Aron AR (2010) Responding with restraint: what are the neurocognitive mechanisms? J Cogn Neurosci 22(7):1479–1492. doi:10.1162/jocn.2009.21307

    Article  PubMed  Google Scholar 

  • Jahfari S, Waldorp L, van den Wildenberg WP, Scholte HS, Ridderinkhof KR, Forstmann BU (2011) Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition. J Neurosci 31(18):6891–6899. doi:10.1523/JNEUROSCI.5253-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Kuhn AA, Tsui A, Aziz T, Ray N, Brucke C, Kupsch A, Schneider GH, Brown P (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215(2):380–387. doi:10.1016/j.expneurol.2008.11.008

    Article  PubMed  Google Scholar 

  • Li CS, Huang C, Constable RT, Sinha R (2006) Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. J Neurosci 26(1):186–192. doi:10.1523/JNEUROSCI.3741-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Li CS, Yan P, Sinha R, Lee TW (2008) Subcortical processes of motor response inhibition during a stop signal task. Neuroimage 41(4):1352–1363. doi:10.1016/j.neuroimage.2008.04.023

    Article  PubMed  Google Scholar 

  • Lim SY, O’Sullivan SS, Kotschet K, Gallagher DA, Lacey C, Lawrence AD, Lees AJ, O’Sullivan DJ, Peppard RF, Rodrigues JP, Schrag A, Silberstein P, Tisch S, Evans AH (2009) Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci 16(9):1148–1152. doi:10.1016/j.jocn.2008.12.010

    Article  PubMed  CAS  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91(3):295–327

    Article  Google Scholar 

  • Mirabella G, Iaconelli S, Romanelli P, Modugno N, Lena F, Manfredi M, Cantore G (2011) Deep brain stimulation of subthalamic nuclei affects arm response inhibition in Parkinson’s patients. Cereb Cortex. doi:10.1093/cercor/bhr187

    PubMed  Google Scholar 

  • Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF (2010) Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci USA 107(30):13240–13245. doi:10.1073/pnas.1000674107

    Article  PubMed  Google Scholar 

  • Obeso JA, Guridi J, De Long M (1997) Surgery for Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:2–8

    Article  PubMed  CAS  Google Scholar 

  • Obeso I, Wilkinson L, Casabona E, Bringas ML, Alvarez M, Alvarez L, Pavon N, Rodriguez-Oroz MC, Macias R, Obeso JA, Jahanshahi M (2011a) Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 212(3):371–384. doi:10.1007/s00221-011-2736-6

    Article  PubMed  Google Scholar 

  • Obeso I, Wilkinson L, Jahanshahi M (2011b) Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson’s disease. Exp Brain Res 213(4):435–445. doi:10.1007/s00221-011-2793-x

    Article  PubMed  CAS  Google Scholar 

  • Ray NJ, Jenkinson N, Brittain J, Holland P, Joint C, Nandi D, Bain PG, Yousif N, Green A, Stein JS, Aziz TZ (2009) The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia 47(13):2828–2834. doi:10.1016/j.neuropsychologia.2009.06.011

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto J-L, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz MI, Quinn NP, Speelman JD, Guridi J, Zamarbide I, Gironell A, Molet J, Pascual-Sedano B, Pidoux B, Bonnet AM, Agid Y, Xie J, Benabid AL, Lozano AM, Saint-Cyr J, Romito L, Contarino MF, Scerrati M, Fraix V, Van Blercom N (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Smith AB, Brammer MJ, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20(1):351–358

    Article  PubMed  Google Scholar 

  • Swann N, Poizner H, Houser M, Gould S, Greenhouse I, Cai W, Strunk J, George J, Aron AR (2011) Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the Beta frequency band: a scalp EEG study in Parkinson’s disease. J Neurosci 31(15):5721–5729. doi:10.1523/JNEUROSCI.6135-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Thobois S, Hotton GR, Pinto S, Wilkinson L, Limousin-Dowsey P, Brooks DJ, Jahanshahi M (2007) STN stimulation alters pallidal-frontal coupling during response selection under competition. J Cereb Blood Flow Metab 27(6):1173–1184. doi:10.1038/sj.jcbfm.9600425

    Article  PubMed  Google Scholar 

  • van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH (2006) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cogn Neurosci 18(4):626–636

    Article  PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2009a) Automaticity of cognitive control: goal priming in response-inhibition paradigms. J Exp Psychol Learn Mem Cogn 35(5):1381–1388. doi:10.1037/a0016645

    Article  PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2009b) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35(3):835–854. doi:10.1037/a0012726

    Article  PubMed  Google Scholar 

  • Verbruggen F, Aron AR, Stevens MA, Chambers CD (2010) Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proc Natl Acad Sci USA 107(31):13966–13971. doi:10.1073/pnas.1001957107

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen F, Chambers CD, Logan GD (2013) Fictitious inhibitory differences: how skewness and slowing distort the estimation of stopping latencies. Psychol Sci [Epub ahead of print]

  • Vink M, Kahn RS, Raemaekers M, van den Heuvel M, Boersma M, Ramsey NF (2005) Function of striatum beyond inhibition and execution of motor responses. Hum Brain Mapp 25(3):336–344. doi:10.1002/hbm.20111

    Article  PubMed  Google Scholar 

  • Voon V, Kubu C, Krack P, Houeto JL, Troster AI (2006) Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 21(Suppl 14):S305–S327. doi:10.1002/mds.20963

    Article  PubMed  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72(2):521–530

    PubMed  CAS  Google Scholar 

  • Wiener M, Magaro CM, Matell MS (2008) Accurate timing but increased impulsivity following excitotoxic lesions of the subthalamic nucleus. Neurosci Lett 440(2):176–180. doi:10.1016/j.neulet.2008.05.071

    Article  PubMed  CAS  Google Scholar 

  • Witt K, Pulkowski U, Herzog J, Lorenz D, Hamel W, Deuschl G, Krack P (2004) Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Arch Neurol 61(5):697–700. doi:10.1001/archneur.61.5.697

    Article  PubMed  Google Scholar 

  • Wylie SA, Ridderinkhof KR, Elias WJ, Frysinger RC, Bashore TR, Downs KE, van Wouwe NC, van den Wildenberg WP (2010) Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease. Brain 133(Pt 12):3611–3624. doi:10.1093/brain/awq239

    Article  PubMed  Google Scholar 

  • Yugeta A, Terao Y, Fukuda H, Hikosaka O, Yokochi F, Okiyama R, Taniguchi M, Takahashi H, Hamada I, Hanajima R, Ugawa Y (2010) Effects of STN stimulation on the initiation and inhibition of saccade in Parkinson disease. Neurology 74(9):743–748. doi:10.1212/WNL.0b013e3181d31e0b

    Article  PubMed  CAS  Google Scholar 

  • Zandbelt BB, Vink M (2010) On the role of the striatum in response inhibition. PLoS ONE 5(11):e13848. doi:10.1371/journal.pone.0013848

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the participants. This research was supported by a PhD studentship from Fundación Caja Madrid, Spain (IO), and a Post-doctoral Career Development Fellowship from Parkinson’s UK (LW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Jahanshahi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obeso, I., Wilkinson, L., Rodríguez-Oroz, MC. et al. Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson’s disease. Exp Brain Res 226, 451–462 (2013). https://doi.org/10.1007/s00221-013-3457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3457-9

Keywords

Navigation