Skip to main content
Log in

Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Evidence from animal, clinical, and imaging studies suggests that the basal ganglia and their frontal connections mediate motor inhibition, but the role of dopamine remains unclear. The aim of our study was to investigate, for the first time, whether levodopa medication influences motor inhibition and conflict resolution on the conditional stop-signal reaction time task in patients with Parkinson’s disease (PD) tested on or off their medication. Sixteen PD patients and 17 healthy controls performed the conditional stop-signal reaction time (SSRT) task, which requires inhibition of responses when a stop signal is presented on “critical” trials. Additionally, on “non-critical” trials, participants are instructed to ignore the stop signal and respond, thus generating conflict between motor inhibition and initiation; and conflict-induced slowing (CIS) on these “non-critical” trials. Levodopa medication did not significantly influence response initiation, inhibition (SSRT) or the measure of conflict resolution (CIS). Compared to healthy controls, PD patients showed significantly worse response initiation and inhibition both on and off their levodopa medication. Our results suggest that motor inhibition or conflict-induced slowing on the conditional stop-signal RT task are not altered by dopamine replacement in PD. This conclusion is consistent with evidence from animal studies and clinical pharmacological investigations suggesting a role for noradrenaline in motor inhibition and impulsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54:1465–1468

    Article  PubMed  CAS  Google Scholar 

  • Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27(14):3743–3752

    Article  PubMed  CAS  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology (Berl) 205:273–283. doi:10.1007/s00213-009-1537-0

    Article  CAS  Google Scholar 

  • Beck AT, Erbaugh J, Ward CH, Mock J, Mendelsohn M (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    PubMed  CAS  Google Scholar 

  • Bloxham CA, Dick DJ, Moore M (1987) Reaction times and attention in Parkinson’s disease. J Neurol Neurosurg Psychiatry 50:1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Boureau YL, Dayan P (2011) Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36:74–97. doi:10.1038/npp.2010.151

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl) 152:362–375

    Article  CAS  Google Scholar 

  • Chamberlain SR, Sahakian BJ (2007) The neuropsychiatry of impulsivity. Curr Opin Psychiatry 20:255–261. doi:10.1097/YCO.0b013e3280ba4989

    PubMed  Google Scholar 

  • Chamberlain SR, Muller U, Blackwell AD, Robbins TW, Sahakian BJ (2006) Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology (Berl) 188:397–407. doi:10.1007/s00213-006-0391-6

    Article  CAS  Google Scholar 

  • Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984. doi:10.1016/j.biopsych.2007.03.003

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SR, Hampshire A, Muller U et al (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555. doi:10.1016/j.biopsych.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  • Congdon E, Lesch KP, Canli T (2008) Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: implications for impulsivity. Am J Med Genet B Neuropsychiatr Genet 147B:27–32. doi:10.1002/ajmg.b.30557

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2008) Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci 28:1208–1212. doi:10.1523/JNEUROSCI.4475-07.2008

    Article  PubMed  CAS  Google Scholar 

  • Crucian GP, Heilman K, Junco E, Maraist M, Owens WE, Foote KD, Okun MS (2007) The crossed response inhibition task in Parkinson’s disease: disinhibition hyperkinesia. Neurocase 13:158–164. doi:10.1080/13554790701448184

    Article  PubMed  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825. doi:10.1016/S0893-133X(02)00343-3

    Article  PubMed  Google Scholar 

  • Defer GL, Widner H, Marie RM, Remy P, Levivier M (1999) Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord 14:572–584

    Article  PubMed  CAS  Google Scholar 

  • Del-Ben CM, Deakin JF, McKie S et al (2005) The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: an FMRI study. Neuropsychopharmacology 30:1724–1734. doi:10.1038/sj.npp.1300728

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117(6):1302–1317

    Article  PubMed  CAS  Google Scholar 

  • Eagle DM, Tufft MR, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology (Berl) 192:193–206. doi:10.1007/s00213-007-0701-7

    Article  CAS  Google Scholar 

  • Eagle DM, Allan ME, Wong JCK, Mar AC, Theobald DE, Robbins TW (2008a) Different effects of D1 and D2 receptor antagonists on the stop-signal task: comparison of effects in the dorsomedial striatum and nucleus accumbens core. In: Society for Neuroscience Annual Meeting, Washington, DC

  • Eagle DM, Bari A, Robbins TW (2008b) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berl) 199:439–456. doi:10.1007/s00213-008-1127-6

    Article  CAS  Google Scholar 

  • Eagle DM, Wong JC, Allan ME, Mar AC, Theobald DE, Robbins TW (2011) Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci 31:7349–7356. doi:10.1523/JNEUROSCI.6182-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Evans AH, Strafella AP, Weintraub D, Stacy M (2009) Impulsive and compulsive behaviors in Parkinson’s disease. Mov Disord 24:1561–1570. doi:10.1002/mds.22505

    Article  PubMed  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361

    Article  CAS  Google Scholar 

  • Fahn S, Elton RL, and members of the UPDRS Development Committee Unified Parkinson’s Disease Rating Scale (1987) In: Fahn SMC, Goldstein M, Clane DB (ed) Recent developments in Parkinson’s disease. Macmillan Healthcare Information, Florham Park (NJ), pp 153–163

  • Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state—practical method for grading cognitive state of patients for clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113:300–326. doi:10.1037/0033-295X.113.2.300

    Article  PubMed  Google Scholar 

  • Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318:1309–1312. doi:10.1126/science.1146157

    Article  PubMed  CAS  Google Scholar 

  • Friedel RO (2004) Dopamine dysfunction in borderline personality disorder: a hypothesis. Neuropsychopharmacology 29:1029–1039. doi:10.1038/sj.npp.1300424

    Article  PubMed  CAS  Google Scholar 

  • Gauggel S, Rieger M, Feghoff TA (2004) Inhibition of ongoing responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:539–544

    PubMed  CAS  Google Scholar 

  • Girotti F, Carella F, Grassi MP, Soliveri P, Marano R, Caraceni T (1986) Motor and cognitive performances of Parkinsonian patients in the on and off phases of the disease. J Neurol Neurosurg Psychiatry 49:657–660

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1999) Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behav Brain Res 100:99–112

    Article  PubMed  CAS  Google Scholar 

  • Hershey T, Black KJ, Hartlein J, Braver TS, Barch DM, Carl JL, Perlmutter JS (2004) Dopaminergic modulation of response inhibition: an fMRI study. Brain Res Cogn Brain Res 20:438–448. doi:10.1016/j.cogbrainres.2004.03.018

    Article  PubMed  CAS  Google Scholar 

  • Housden CR, O’Sullivan SS, Joyce EM, Lees AJ, Roiser JP (2010) Intact reward learning but elevated delay discounting in Parkinson’s disease patients with impulsive-compulsive spectrum behaviors. Neuropsychopharmacology 35:2155–2164. doi:10.1038/npp.2010.84

    Article  PubMed  Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi M, Brown RG, Marsden CD (1992) The effect of withdrawal of dopaminergic medication on simple and choice reaction time and the use of advance information in Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:1168–1176

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi M, Jones CR, Zijlmans J et al (2010) Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 133:727–745. doi:10.1093/brain/awq012

    Article  PubMed  Google Scholar 

  • Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8:3581–3585

    Article  PubMed  CAS  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327

    Article  Google Scholar 

  • Meck WH (1996) Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 3:227–242

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  CAS  Google Scholar 

  • Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl) 191:507–520. doi:10.1007/s00213-006-0502-4

    Article  CAS  Google Scholar 

  • Obeso I, Wilkinson L, Casabona E et al (2011) Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 212:371–384

    Google Scholar 

  • Overtoom CC, Verbaten MN, Kemner C et al (2003) Effects of methylphenidate, desipramine, and L-dopa on attention and inhibition in children with attention deficit hyperactivity disorder. Behav Brain Res 145:7–15

    Article  PubMed  CAS  Google Scholar 

  • Overtoom CC, Bekker EM, van der Molen MW, Verbaten MN, Kooij JJ, Buitelaar JK, Kenemans JL (2009) Methylphenidate restores link between stop-signal sensory impact and successful stopping in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 65:614–619. doi:10.1016/j.biopsych.2008.10.048

    Article  PubMed  CAS  Google Scholar 

  • Pullman SL, Watts RL, Juncos JL, Sanes JN (1990) Movement amplitude choice reaction time performance in Parkinson’s disease may be independent of dopaminergic status. J Neurol Neurosurg Psychiatry 53:279–283

    Article  PubMed  CAS  Google Scholar 

  • Puumala T, Sirvio J (1998) Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83:489–499

    Article  PubMed  CAS  Google Scholar 

  • Rammsayer TH (2008) Neuropharmacological approaches to human timing. In: Grondin S (ed) Psychology of time. Emerald, Bingley, UK, pp 295–320

    Google Scholar 

  • Ray NJ, Jenkinson N, Brittain J et al (2009) The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia 47:2828–2834. doi:10.1016/j.neuropsychologia.2009.06.011

    Article  PubMed  CAS  Google Scholar 

  • Robinson ES, Eagle DM, Mar AC et al (2008) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037. doi:10.1038/sj.npp.1301487

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein M, Phillips TJ, Bunzow JR et al (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7:191–197

    Article  PubMed  CAS  Google Scholar 

  • Tannock R, Schachar RJ, Carr RP, Chajczyk D, Logan GD (1989) Effects of methylphenidate on inhibitory control in hyperactive children. J Abnorm Child Psychol 17:473–491

    Article  PubMed  CAS  Google Scholar 

  • Voon V, Reynolds B, Brezing C et al (2010) Impulsive choice and response in dopamine agonist-related impulse control behaviors. Psychopharmacology (Berl) 207:645–659. doi:10.1007/s00213-009-1697-y

    Article  CAS  Google Scholar 

  • Weintraub D, Siderowf AD, Potenza MN et al (2006) Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol 63:969–973. doi:10.1001/archneur.63.7.969

    Article  PubMed  Google Scholar 

  • Wiener M, Lohoff FW, Coslett HB (2011) Double dissociation of dopamine genes and timing in humans. J Cogn Neurosci. doi:10.1162/jocn.2011.21626

  • Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130:1787–1798. doi:10.1093/brain/awm111

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW (2004) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl) 176:376–385. doi:10.1007/s00213-004-1884-9

    Article  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW (2006) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–114. doi:10.1093/cercor/bhi088

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the participants. This work was supported by a PhD studentship from Fundación Caja Madrid (IO) and a Career Development Fellowship from the Parkinson’s disease Society (LW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obeso, I., Wilkinson, L. & Jahanshahi, M. Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson’s disease. Exp Brain Res 213, 435–445 (2011). https://doi.org/10.1007/s00221-011-2793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2793-x

Keywords

Navigation