Skip to main content

Advertisement

Log in

Short-term cortical plasticity induced by conditioning pain modulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To investigate the effects of homotopic and heterotopic conditioning pain modulation (CPM) on short-term cortical plasticity. Glutamate (tonic pain) or isotonic saline (sham) was injected in the upper trapezius (homotopic) and in the thenar (heterotopic) muscles. Intramuscular electrical stimulation was applied to the trapezius at pain threshold intensities, and somatosensory evoked potentials were recorded with 128 channel EEG. Pain ratings were obtained during glutamate and sham pain injection. Short-term cortical plasticity to electrical stimulation was investigated before, during, and after homotopic and heterotopic CPM versus control. Peak latencies at N100, P200, and P300 were extracted and the location/strength of corresponding dipole current sources and multiple dipoles were estimated. Homotopic CPM caused hypoalgesia (P = 0.032, 30.6% compared to baseline) to electrical stimulation. No cortical changes were found for homotopic CPM. A positive correlation at P200 between electrical pain threshold after tonic pain and the z coordinate after tonic pain (P = 0.032) was found for homotopic CPM. For heterotopic CPM, no significant hypoalgesia was found and a dipole shift of the P300 z coordinate (P = 0.001) was found between glutamate versus sham pain (P = 0.009). This generator was located in the cingulate. A positive correlation at P300 between pain ratings to glutamate injection and the x coordinate during tonic pain (P = 0.016) was found for heterotopic CPM. Heterotopic CPM caused short-term cortical plasticity within the cingulate that was correlated to subjective pain ratings. The degree of long-term depressive effect to homotopic CPM was correlated to the change in location of the P200 dipole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484

    Article  PubMed  Google Scholar 

  • Arendt-Nielsen L (1994) Characteristics, detection, and modulation of laser-evoked vertex potentials. Acta Anaesthesiol Scand Suppl 101:7–44

    PubMed  CAS  Google Scholar 

  • Arendt-Nielsen L, Gotliebsen K (1992) Segmental inhibition of laser-evoked brain potentials by ipsi- and contralaterally applied cold pressor pain. Eur J Appl Physiol Occup Physiol 64:56–61

    Article  PubMed  CAS  Google Scholar 

  • Arendt-Nielsen L, Graven-Nielsen T, Svensson P, Jensen TS (1997) Temporal summation in muscles and referred pain areas: an experimental human study. Muscle Nerve 20:1311–1313

    Article  PubMed  CAS  Google Scholar 

  • Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, Graven-Nielsen T (2010) Sensitization in patients with painful knee osteoarthritis. Pain 149:573–581

    Article  PubMed  Google Scholar 

  • Beitel RE, Dubner R (1976) Response of unmyelinated (C) polymodal nociceptors to thermal stimuli applied to monkey’s face. J Neurophysiol 39:1160–1175

    PubMed  CAS  Google Scholar 

  • Bingel U, Tracey I (2008) Imaging CNS modulation of pain in humans. Physiol Bethesda 23:371–380

    Article  Google Scholar 

  • Bouhassira D, Villanueva L, Bing Z, Le Bars D (1992) Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat. Brain Res 595:353–357

    Article  PubMed  CAS  Google Scholar 

  • Bromm B (2001) Brain images of pain. News Physiol Sci 16:244–249

    PubMed  CAS  Google Scholar 

  • Bromm B (2004) The involvement of the posterior cingulate gyrus in phasic pain processing of humans. Neurosci Lett 361:245–249

    Article  PubMed  CAS  Google Scholar 

  • Buchgreitz L, Egsgaard LL, Jensen R, Arendt-Nielsen L, Bendtsen L (2008) Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study. Brain 131:3232–3238

    Article  PubMed  CAS  Google Scholar 

  • Buchgreitz L, Egsgaard LL, Jensen R, Arendt-Nielsen L, Bendtsen L (2010) Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study. Cephalalgia 30:191–199

    PubMed  CAS  Google Scholar 

  • Chen AC, Treede RD, Bromm B (1985) Tonic pain inhibits phasic pain: evoked cerebral potential correlates in man. Psychiatry Res 14:343–351

    Article  PubMed  CAS  Google Scholar 

  • Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30

    Article  PubMed  CAS  Google Scholar 

  • Durka PJ, Matysiak A, Montes EM, Sosa PV, Blinowska KJ (2005) Multichannel matching pursuit and EEG inverse solutions. J Neurosci Methods 148:49–59

    Article  PubMed  Google Scholar 

  • Flor H (2002a) The modification of cortical reorganization and chronic pain by sensory feedback. Appl Psychophysiol Biofeedback 27:215–227

    Article  PubMed  Google Scholar 

  • Flor H (2002b) Painful memories. Can we train chronic pain patients to ‘forget’ their pain? EMBO Rep 3:288–291

    Article  PubMed  CAS  Google Scholar 

  • Forss N, Hari R, Salmelin R, Ahonen A, Hamalainen M, Kajola M, Knuutila J, Simola J (1994) Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res 99:309–315

    Article  PubMed  CAS  Google Scholar 

  • Fujii K, Motohashi K, Umino M (2006) Heterotopic ischemic pain attenuates somatosensory evoked potentials induced by electrical tooth stimulation: diffuse noxious inhibitory controls in the trigeminal nerve territory. Eur J Pain 10:495–504

    Article  PubMed  Google Scholar 

  • Gammon GD, Starr I (1941) Studies on the relief of pain by counterirritation. J Clin Invest 20:13–20

    Article  PubMed  CAS  Google Scholar 

  • Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, Clauw DJ (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50:613–623

    Article  PubMed  Google Scholar 

  • Gratkowski M, Haueisen J, Arendt-Nielsen L, Chen AC, Zanow F (2006) Time-frequency filtering of MEG signals with matching pursuit. J Physiol Paris 99:47–57

    Article  PubMed  Google Scholar 

  • Gratkowski M, Haueisen J, Arendt-Nielsen L, Cn Chen A, Zanow F (2008) Decomposition of biomedical signals in spatial and time-frequency modes. Methods Inf Med 47:26–37

    PubMed  CAS  Google Scholar 

  • Graven-Nielsen T, Babenko V, Svensson P, Arendt-Nielsen L (1998) Experimentally induced muscle pain induces hypoalgesia in heterotopic deep tissues, but not in homotopic deep tissues. Brain Res 787:203–210

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 354:1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Julien N, Goffaux P, Arsenault P, Marchand S (2005) Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain 114:295–302

    Article  PubMed  Google Scholar 

  • Kakigi R, Watanabe S (1996) Pain relief by various kinds of interference stimulation applied to the peripheral skin in humans: pain-related brain potentials following CO2 laser stimulation. J Peripher Nerv Syst 1:189–198

    PubMed  CAS  Google Scholar 

  • Knost B, Flor H, Birbaumer N, Schugens MM (1999) Learned maintenance of pain: muscle tension reduces central nervous system processing of painful stimulation in chronic and subchronic pain patients. Psychophysiology 36:755–764

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  PubMed  CAS  Google Scholar 

  • Lautenbacher S, Rollman GB (1997) Possible deficiencies of pain modulation in fibromyalgia. Clin J Pain 13:189–196

    Article  PubMed  CAS  Google Scholar 

  • Le Bars D, Villanueva L (1988) Electrophysiological evidence for the activation of descending inhibitory controls by nociceptive afferent pathways. Prog Brain Res 77:275–299

    Article  PubMed  CAS  Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6:283–304

    Article  PubMed  CAS  Google Scholar 

  • Lelic D, Gratkowski M, Valeriani M, Arendt-Nielsen L, Drewes AM (2009) Inverse modeling on decomposed electroencephalographic data: a way forward? J Clin Neurophysiol 26:227–235

    Article  PubMed  Google Scholar 

  • Lelic D, Gratkowski M, Hennings K, Drewes AM (2011) Multichannel matching pursuit validation and clustering-A simulation and empirical study. J Neurosci Methods 196:190–200

    Article  PubMed  Google Scholar 

  • Longe SE, Wise R, Bantick S, Lloyd D, Johansen-Berg H, McGlone F, Tracey I (2001) Counter-stimulatory effects on pain perception and processing are significantly altered by attention: an fMRI study. Neuroreport 12:2021–2025

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva FH, Wieringa HJ, Peters MJ (1991) Source localization of EEG versus MEG: empirical comparison using visually evoked responses and theoretical considerations. Brain Topogr 4:133–142

    Article  PubMed  CAS  Google Scholar 

  • Mallat SG, Zhang Z (1993) Matching pursuit with time-frequency dictionaries. IEEE Trans Signal Proc 41:3397–3415

    Article  Google Scholar 

  • Martikainen IK, Narhi MV, Pertovaara A (2004) Spatial integration of cold pressor pain sensation in humans. Neurosci Lett 361:140–143

    Article  PubMed  CAS  Google Scholar 

  • Mauguiere F, Merlet I, Forss N, Vanni S, Jousmaki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain: a dipole modelling study of magnetic fields evoked by median nerve stimulation. Part II: Effects of stimulus rate, attention and stimulus detection. Electroencephalogr Clin Neurophysiol 104:290–295

    Article  PubMed  CAS  Google Scholar 

  • Mayer DJ (1984) Analgesia produced by electrical stimulation of the brain. Prog Neuropsychopharmacol Biol Psychiatry 8:557–564

    Article  PubMed  CAS  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  PubMed  CAS  Google Scholar 

  • Montoya P, Sitges C (2006) Affective modulation of somatosensory-evoked potentials elicited by tactile stimulation. Brain Res 1068:205–212

    Article  PubMed  CAS  Google Scholar 

  • Moont R, Crispel Y, Lev R, Pud D, Yarnitsky D (2011) Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study. Pain 152:1469–1477

    Google Scholar 

  • Murakami T, Sakuma K, Nomura T, Uemura Y, Hashimoto I, Nakashima K (2008) Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation. Exp Brain Res 184:339–347

    Article  PubMed  Google Scholar 

  • Niddam DM, Graven-Nielsen T, Arendt-Nielsen L, Chen AC (2001) Non-painful and painful surface and intramuscular electrical stimulation at the thenar and hypothenar sites: differential cerebral dynamics of early to late latency SEPs. Brain Topogr 13:283–292

    Article  PubMed  CAS  Google Scholar 

  • Niddam DM, Yeh TC, Wu YT, Lee PL, Ho LT, Arendt-Nielsen L, Chen AC, Hsieh JC (2002) Event-related functional MRI study on central representation of acute muscle pain induced by electrical stimulation. Neuroimage 17:1437–1450

    Article  PubMed  Google Scholar 

  • Niddam DM, Chen LF, Wu YT, Hsieh JC (2005) Spatiotemporal brain dynamics in response to muscle stimulation. Neuroimage 25:942–951

    Article  PubMed  Google Scholar 

  • Niddam DM, Chan RC, Lee SH, Yeh TC, Hsieh JC (2007) Central modulation of pain evoked from myofascial trigger point. Clin J Pain 23:440–448

    Article  PubMed  Google Scholar 

  • Niddam DM, Chan RC, Lee SH, Yeh TC, Hsieh JC (2008) Central representation of hyperalgesia from myofascial trigger point. Neuroimage 39:1299–1306

    Article  PubMed  Google Scholar 

  • Olejniczak P (2006) Neurophysiologic basis of EEG. J Clin Neurophysiol 23:186–189

    Article  PubMed  Google Scholar 

  • Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112:713–719

    Article  PubMed  CAS  Google Scholar 

  • Piche M, Arsenault M, Poitras P, Rainville P, Bouin M (2010) Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome. Pain 148:49–58

    Article  PubMed  Google Scholar 

  • Pud D, Sprecher E, Yarnitsky D (2005) Homotopic and heterotopic effects of endogenous analgesia in healthy volunteers. Neurosci Lett 380:209–213

    Article  PubMed  CAS  Google Scholar 

  • Pud D, Yarnitsky D, Eisenberg E, Andersen OK, Arendt-Nielsen L (2006) Effects of cold stimulation on secondary hyperalgesia (HA) induced by capsaicin in healthy volunteers. Exp Brain Res 170:22–29

    Article  PubMed  CAS  Google Scholar 

  • Reinert A, Treede R, Bromm B (2000) The pain inhibiting pain effect: an electrophysiological study in humans. Brain Res 862:103–110

    Article  PubMed  CAS  Google Scholar 

  • Romaniello A, Arendt-Nielsen L, Cruccu G, Svensson P (2002) Modulation of trigeminal laser evoked potentials and laser silent periods by homotopical experimental pain. Pain 98:217–228

    Article  PubMed  Google Scholar 

  • Rottmann S, Jung K, Ellrich J (2008) Electrical low-frequency stimulation induces homotopic long-term depression of nociception and pain from hand in man. Clin Neurophysiol 119:1895–1904

    Article  PubMed  Google Scholar 

  • Shimojo M, Svensson P, Arendt-Nielsen L, Chen AC (2000) Dynamic brain topography of somatosensory evoked potentials and equivalent dipoles in response to graded painful skin and muscle stimulation. Brain Topogr 13:43–58

    Article  PubMed  CAS  Google Scholar 

  • Silverman DH, Munakata JA, Ennes H, Mandelkern MA, Hoh CK, Mayer EA (1997) Regional cerebral activity in normal and pathological perception of visceral pain. Gastroenterology 112:64–72

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Beydoun A, Morrow TJ, Casey KL (1997) Human intramuscular and cutaneous pain: psychophysical comparisons. Exp Brain Res 114:390–392

    Article  PubMed  CAS  Google Scholar 

  • Svensson P, Hashikawa CH, Casey KL (1999) Site- and modality-specific modulation of experimental muscle pain in humans. Brain Res 851:32–38

    Article  PubMed  CAS  Google Scholar 

  • Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH (1991) Multiple representations of pain in human cerebral cortex. Science 251:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Valeriani M, Le Pera D, Restuccia D, de Armas L, Maiese T, Tonali P, Vigevano F, Arendt-Nielsen L (2005) Segmental inhibition of cutaneous heat sensation and of laser-evoked potentials by experimental muscle pain. Neuroscience 136:301–309

    Article  PubMed  CAS  Google Scholar 

  • Valeriani M, Tonali P, Le Pera D, Restuccia D, De Armas L, Del Vesco C, Miliucci R, Fiaschi A, Vigevano F, Arendt-Nielsen L, Tinazzi M (2006) Modulation of laser-evoked potentials by experimental cutaneous tonic pain. Neuroscience 140:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Valeriani M, Tonali P, De Armas L, Mariani S, Vigevano F, Le Pera D (2008) Nociceptive contribution to the evoked potentials after painful intramuscular electrical stimulation. Neurosci Res 60:170–175

    Article  PubMed  Google Scholar 

  • Waberski TD, Dieckhofer A, Reminghorst U, Buchner H, Gobbele R (2007) Short-term cortical reorganization by deafferentation of the contralateral sensory cortex. Neuroreport 18:1199–1203

    Article  PubMed  Google Scholar 

  • Waberski TD, Lamberty K, Dieckhofer A, Buchner H, Gobbele R (2008) Short-term modulation of the ipsilateral primary sensory cortex by nociceptive interference revealed by SEPs. Neurosci Lett 435:137–141

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chen AC, Arendt-Nielsen L (2006) Cortical plasticity: effect of high and low intensity conditioning electrical stimulations (100 Hz) on SEPs to painful finger stimulation. Clin Neurophysiol 117:1075–1084

    Article  PubMed  Google Scholar 

  • Wilder-Smith CH, Schindler D, Lovblad K, Redmond SM, Nirkko A (2004) Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 53:1595–1601

    Article  PubMed  CAS  Google Scholar 

  • Willer JC, De Broucker T, Le Bars D (1989) Encoding of nociceptive thermal stimuli by diffuse noxious inhibitory controls in humans. J Neurophysiol 62:1028–1038

    PubMed  CAS  Google Scholar 

  • Yamasaki H, Kakigi R, Watanabe S, Hoshiyama M (2000) Effects of distraction on pain-related somatosensory evoked magnetic fields and potentials following painful electrical stimulation. Brain Res Cogn Brain Res 9:165–175

    Article  PubMed  CAS  Google Scholar 

  • Yarnitsky D, Kunin M, Brik R, Sprecher E (1997) Vibration reduces thermal pain in adjacent dermatomes. Pain 69:75–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funded by Danish Technical Research Council.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Arendt-Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egsgaard, L.L., Buchgreitz, L., Wang, L. et al. Short-term cortical plasticity induced by conditioning pain modulation. Exp Brain Res 216, 91–101 (2012). https://doi.org/10.1007/s00221-011-2913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2913-7

Keywords

Navigation