Skip to main content
Log in

Recovery of function following unilateral damage to visuoparietal cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Damage to the visuoparietal cortex located in the banks of the middle suprasylvian gyrus of the cat has been shown to produce a deficit in the detection and localization of moving visual cues presented in the contralesional visual hemifield. There is evidence from reversible cooling deactivation studies that the integrity of this orienting function is not completely dependent on the VP cortex and that under the right circumstances, other brain regions may come online and completely take over the processing that subserves this behavior. We examined the recovery of orienting behavior after unilateral damage to the VP cortex. We found that consistent with previous data, VP damage produced an impairment in the capacity to detect and orient to moving visual stimuli in the contralesional visual field. Over a span of days, spontaneous recovery fully occurred. The ability to detect and localize static visual stimuli was tested as a fiducial measure of parietal cortex function, and this function did not recover. We conclude that the detection and localization of moving visual stimuli is not a function that requires VP cortex and argue for the existence of a parallel and redundant subcortical-cortical brain network that serves as the substrate for recovery of function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allman BL, Meredith MA (2007) Multisensory processing in “unimodal” neurons: cross-modal subthreshold auditory effects in cat extrastriate visual cortex. J Neurophysiol 98:545–549

    Article  PubMed  Google Scholar 

  • Camarda R, Rizzolatti G (1976) Visual receptive fields in the lateral suprasylvian area (Clare-Bishop area) of the cat. Brain Res 101:427–443

    Article  CAS  PubMed  Google Scholar 

  • Durmer JS, Rosenquist AC (2001) Ibotenic acid lesions in the pedunculopontine region result in recovery of visual orienting in the hemianopic cat. Neuroscience 106:765–781

    Article  CAS  PubMed  Google Scholar 

  • Fitzmaurice MC, Ciaramitaro VM, Palmer LA, Rosenquist AC (2003) Visual detection deficits following inactivation of the superior colliculus in the cat. Vis Neurosci 20:687–701

    Article  PubMed  Google Scholar 

  • Hardy SC, Stein BE (1988) Small lateral suprasylvian cortex lesions produce visual neglect and decreased visual activity in the superior colliculus. J Comp Neurol 273:527–542

    Article  CAS  PubMed  Google Scholar 

  • Huxlin KR, Pasternak T (2004) Training-induced recovery of visual motion perception after extrastriate cortical damage in the adult cat. Cereb Cortex 14:81–90

    Article  PubMed  Google Scholar 

  • Huxlin KR, Williams JM, Price T (2008) A neurochemical signature of visual recovery after extrastriate cortical damage in the adult cat. J Comp Neurol 508:45–61

    Article  PubMed  Google Scholar 

  • Lomber SG, Payne BR (1996) Removal of two halves restores the whole: reversal of visual hemineglect during bilateral cortical or collicular inactivation in the cat. Vis Neurosci 13:1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Payne BR (2001) Task-specific reversal of visual hemineglect following bilateral reversible deactivation of posterior parietal cortex: a comparison with deactivation of the superior colliculus. Vis Neurosci 18:487–499

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Payne BR (2004) Cerebral areas mediating visual redirection of gaze: cooling deactivation of 15 loci in the cat. J Comp Neurol 474:190–208

    Article  PubMed  Google Scholar 

  • Lomber SG, Payne BR, Hilgetag CC, Rushmore J (2002) Restoration of visual orienting into a cortically blind hemifield by reversible deactivation of posterior parietal cortex or the superior colliculus. Exp Brain Res 142:463–474

    Article  PubMed  Google Scholar 

  • Pasternak T, Horn KM, Maunsell JH (1989) Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat. Vis Neurosci 3:365–375

    Article  CAS  PubMed  Google Scholar 

  • Payne BR, Lomber SG, Geeraerts S, van der Gucht E, Vandenbussche E (1996) Reversible visual hemineglect. Proc Natl Acad Sci USA 93:290–294

    Article  CAS  PubMed  Google Scholar 

  • Payne BR, Lomber SG, Rushmore RJ, Pascual-Leone A (2003) Cancellation of visuoparietal lesion-induced spatial neglect. Exp Brain Res 150:395–398

    PubMed  Google Scholar 

  • Rauschecker JP, von Grunau MW, Poulin C (1987) Centrifugal organization of direction preferences in the cat’s lateral suprasylvian visual cortex and its relation to flow field processing. J Neurosci 7:943–958

    CAS  PubMed  Google Scholar 

  • Reinoso-Suarez F (1961) Topographischer Hirnatlas der Katze. E. Merck AG, Darmstadt

  • Rosenquist AC (1985) Connections of visual cortical areas in the cat. In: Peters A, Jones E (eds) Cerebral cortex, vol 3. Plenum Press, New York, pp 81–1178

  • Rosenquist AC, Ciaramitaro VM, Durmer JS, Wallace SF, Todd WE (1996) Ibotenic acid lesions of the superior colliculus produce longer lasting deficits in visual orienting behavior than aspiration lesions in the cat. Prog Brain Res 112:117–130

    Article  CAS  PubMed  Google Scholar 

  • Rudolph KK, Pasternak T (1996) Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. Cereb Cortex 6:814–822

    Article  CAS  PubMed  Google Scholar 

  • Rushmore RJ, Payne BR (2004) Neuroplasticity after unilateral visual cortex damage in the newborn cat. Behav Brain Res 153:557–565

    Article  PubMed  Google Scholar 

  • Rushmore RJ, Payne BR, Lomber SG (2005) Functional impact of primary visual cortex deactivation on subcortical target structures in the thalamus and midbrain. J Comp Neurol 488:414–426

    Article  PubMed  Google Scholar 

  • Rushmore RJ, Valero-Cabre A, Lomber SG, Hilgetag CC, Payne BR (2006) Functional circuitry underlying visual neglect. Brain 129:1803–1821

    Article  PubMed  Google Scholar 

  • Sherk H, Kim JN (2002) Responses in extrastriate cortex to optic flow during simulated turns. Vis Neurosci 19:409–419

    Article  PubMed  Google Scholar 

  • Spear PD, Baumann TP (1975) Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. J Neurophysiol 38:1403–1420

    CAS  PubMed  Google Scholar 

  • Sprague JM (1966) Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153:1544–1547

    Article  CAS  PubMed  Google Scholar 

  • Sprague JM, Meikle TH Jr (1965) The role of the superior colliculus in visually guided behavior. Exp Neurol 11:115–146

    Article  CAS  PubMed  Google Scholar 

  • Valero-Cabre A, Payne BR, Rushmore J, Lomber SG, Pascual-Leone A (2005) Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: a 14C–2DG tracing study in the cat. Exp Brain Res 163:1–12

    Article  PubMed  Google Scholar 

  • Van Sluyters RC (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research, report of an institute for laboratory animal research committee. National Research Council of the National Academies. The National Academy Press, Washington

    Google Scholar 

  • Vanduffel W, Payne BR, Lomber SG, Orban GA (1997) Functional impact of cerebral connections. Proc Natl Acad Sci USA 94:7617–7620

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve MY, Ptito M, Casanova C (2006) Global motion integration in the postero-medial part of the lateral suprasylvian cortex in the cat. Exp Brain Res 172:485–497

    Article  CAS  PubMed  Google Scholar 

  • von Grunau M, Frost BJ (1983) Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area. Exp Brain Res 49:84–92

    Article  Google Scholar 

  • Wallace SF, Rosenquist AC, Sprague JM (1990) Ibotenic acid lesions of the lateral substantia nigra restore visual orientation behavior in the hemianopic cat. J Comp Neurol 296:222–252

    Article  CAS  PubMed  Google Scholar 

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NS32137 and NS44624. We thank Dr. L.J. Toth, Linda Afifi, and the anonymous reviewers for valuable and thoughtful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Rushmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushmore, R.J., Payne, B. & Valero-Cabre, A. Recovery of function following unilateral damage to visuoparietal cortex. Exp Brain Res 203, 693–700 (2010). https://doi.org/10.1007/s00221-010-2278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2278-3

Keywords

Navigation