Skip to main content
Log in

Global motion integration in the postero-medial part of the lateral suprasylvian cortex in the cat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In cats, the postero-medial part of lateral suprasylvian cortex (PMLS) is generally considered a key area for motion processing. While behavioral studies have indeed supported the role of PMLS cortex in higher order motion integration (Cereb Cortex 6:814–822, 1996), there is no evidence that individual PMLS cells can perform such analysis (Vis Neurosci 5:463–468, 1990; J Neurophysiol 63:1529–1543, 1990). Given the fundamental importance of understanding the neural substrate subtending higher order motion processing, we investigated whether PMLS neurons can signal the direction of motion of complex random dot kinematograms (RDKs) wherein comprising elements do not provide any local coherent motion cues. Results indicated that most PMLS cells (82%) can integrate the displacement of individual elements into a global motion percept. Their large receptive fields allowed the integration of motion for elements separated by large spatial intervals (up to 4°). In most cases, the analysis of complex RDK motion necessitated the contribution of the area of the visual field beyond the classical receptive field. None of the complex RDK-sensitive cells were found to be pattern-motion selective when tested with plaid patterns. Our results provide the first evidence that receptive fields of PMLS neurons can perform global motion analysis and support the behavioral evidence that this area is implicated in complex motion processing (Cereb Cortex 6:814–822, 1996). It also further corroborates the findings that PMLS neurons cannot signal the true direction of a plaid pattern (Vis Neurosci 5:463–468, 1990; J Neurophysiol 63:1529–1543, 1990). Providing that these same neurons can signal the direction of complex RDKs, there may be distinct cortical mechanisms for processing different types of complex motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramson BP, Chalupa LM (1985) The laminar distribution of cortical connections with the tecto- and cortico-recipient zones in the cat’s lateral posterior nucleus. Neuroscience 15:81–95

    Article  PubMed  CAS  Google Scholar 

  • Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300:523–525

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1:371–394

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C, Zumbroich TJ (1987) Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. J Physiol (Lond) 389:569–603

    CAS  Google Scholar 

  • Britten KH, Newsome WT (1998) Tuning bandwidths for near-threshold stimuli in area MT. J Neurophysiol 80:762–770

    PubMed  CAS  Google Scholar 

  • Brosseau-Lachaine O, Faubert J, Casanova C (2001) Functional sub-regions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat. Cereb Cortex 11:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco M, Goebel R, Neuenschwander S, Singer W (2000) Neural synchrony correlates with surface segregation rules. Nature 405:685–689

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco M, Formisano E, Backes W, Zanella F, Neuenschwander S, Singer W, Goebel R (2002) Activity patterns in human motion-sensitive areas depend on the interpretation of global motion. Proc Natl Acad Sci USA 99:13914–13919

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Li B, Diao YC (2004) Response properties of neurons in cat dorsal lateral suprasylvian cortex to optic flow fields. Neuroreport 15:1019–1023

    Article  PubMed  Google Scholar 

  • Downing CJ, Movshon JA (1989) Spatial and temporal summation in the detection of motion in stochastic random dot display. Invest Ophthalmol Vis Sci Suppl 30:72

    Google Scholar 

  • Dreher B, Djavadian RL, Turlejski KJ, Wang C (1996) Areas PMLS and 21a of cat visual cortex are not only functionally but also hodologically distinct. Prog Brain Res 112:251–276

    PubMed  CAS  Google Scholar 

  • Dumbrava D, Faubert J, Casanova C (2001) Global motion integration in the cat’s lateral posterior-pulvinar complex. Eur J Neurosci 13:2218–2226

    Article  PubMed  CAS  Google Scholar 

  • Gizzi MS, Katz E, Movshon JA (1990a) Spatial and temporal analysis by neurons in the representation of the central visual field in the cat’s lateral suprasylvian visual cortex. Vis Neurosci 5:463–468

    CAS  Google Scholar 

  • Gizzi MS, Katz E, Schumer RA, Movshon JA (1990b) Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. J Neurophysiol 63:1529–1543

    CAS  Google Scholar 

  • Guido W, Tong L, Spear PD (1990) Afferent bases of spatial- and temporal-frequency processing by neurons in the cat’s posteromedial lateral suprasylvian cortex: effects of removing areas 17, 18, and 19. J Neurophysiol 64:1636–1651

    PubMed  CAS  Google Scholar 

  • Guo K, Benson PJ, Blakemore C (2004) Pattern motion is present in V1 of awake but not anaesthetized monkeys. Eur J Neurosci 19:1055–1066

    Article  PubMed  Google Scholar 

  • Heuer HW, Britten KH (2004) Optic flow signals in extrastriate area MST: comparison of perceptual and neuronal sensitivity. J Neurophysiol 91:1314–1326

    Article  PubMed  Google Scholar 

  • Huk AC, Heeger DJ (2002) Pattern-motion responses in human visual cortex. Nat Neurosci 5:72–75

    Article  PubMed  CAS  Google Scholar 

  • Huxlin KR, Pasternak T (2004) Training-induced recovery of visual motion perception after extrastriate cortical damage in the adult cat. Cereb Cortex 14:81–90

    Article  PubMed  Google Scholar 

  • Lehky SR, Sejnowski TJ (1990) Neural model of stereoacuity and depth interpolation based on a distributed representation of stereo disparity. J Neurosci 10:2281–2299

    PubMed  CAS  Google Scholar 

  • Li B, Li BW, Chen Y, Wang LH, Diao YC (2000) Response properties of PMLS and PLLS neurons to stimulated optic flow patterns. Eur J Neurosci 12:1534–1544

    Article  PubMed  CAS  Google Scholar 

  • Li B, Chen Y, Li BW, Wang LH, Diao YC (2001) Pattern and component motion selectivity in cortical area PMLS of the cat. Eur J Neurosci 14:690–700

    Article  PubMed  CAS  Google Scholar 

  • Majaj N, Carandini M, Smith MA, Movshon JA (1999) Local integration of features for the computation of pattern direction by neurons in macaque area MT. Soc Neurosci Abstr 25:674

    Google Scholar 

  • Merabet L, Desautels A, Minville K, Casanova C (1998) Motion integration in a thalamic visual nucleus. Nature 396:265–268

    Article  PubMed  CAS  Google Scholar 

  • Merabet L, Minville K, Ptito M, Casanova C (2000) Responses of neurons in the cat posteromedial lateral suprasylvian cortex to moving texture patterns. Neuroscience 97: 611–623

    Article  PubMed  CAS  Google Scholar 

  • Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. J Neurophysiol 55:1328–1339

    PubMed  CAS  Google Scholar 

  • Miller R (1996) Cortico-thalamic interplay and the security of operation of neural assemblies and the temporal chains in the cerebral cortex. Biol Cybern 75:263–275

    Article  PubMed  CAS  Google Scholar 

  • Minville K, Casanova C (1998) Spatial frequency processing in the posteromedial lateral suprasylvian cortex does not depend on the projections from the striate-recipient zone of the cat’s lateral posterior-pulvinar complex. Neurosciences 84:699–711

    Article  CAS  Google Scholar 

  • Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1986) The analysis of moving visual patterns. In: Chagas C, Gattass R, Gross C (eds) Pattern recognition mechanisms. Springer, Berlin Heidelberg New York, pp 148–164

    Google Scholar 

  • Movshon JA, Albright TD, Stoner GR, Majaj NJ, Smith MA (2003) Cortical responses to visual motion in alert and anesthetized monkeys. Nat Neurosci 6:3

    Article  PubMed  CAS  Google Scholar 

  • Mumford D (1991) On the computational architecture of the neocortex. I. The role of the thalamo-cortical loop. Biol Cybern 65:135–145

    Article  PubMed  CAS  Google Scholar 

  • Newsome WT, Paré EB (1988) A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J Neurosci 8:2201–2211

    PubMed  CAS  Google Scholar 

  • Norita M, Kase M, Hoshino K, Meguro R, Funaki S, Hirano S, McHaffie JG (1996) Extrinsic and intrinsic connections of the cat’s lateral suprasylvian visual area. Prog Brain Res 112:231–250

    Article  PubMed  CAS  Google Scholar 

  • Ouellette BG, Minville K, Faubert J, Casanova C (2004) Simple and complex visual motion response properties in the anterior medial bank of the lateral suprasylvian cortex. Neuroscience 123:231–245

    Article  PubMed  CAS  Google Scholar 

  • Pack CC, Berezovskii VK, Born RT (2001) Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature 414:905–908

    Article  PubMed  CAS  Google Scholar 

  • Pack CC, Berezovskii VK, Born RT (2003) Reply to ‘Cortical responses to visual motion in alert and anesthetized monkeys’. Nat Neurosci 6:3–4

    Article  CAS  Google Scholar 

  • Pasternak T, Horn KM, Maunsell JH (1989) Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat. Vis Neurosci 3:365–375

    Article  PubMed  CAS  Google Scholar 

  • Pasternak T, Tompkins J, Olson CR (1995) The role of striate cortex in visual function of the cat. J Neurosci 15:1940–1950

    PubMed  CAS  Google Scholar 

  • Payne BR (1993) Evidence for visual cortical area homologs in cat and macaque monkey. Cereb Cortex 3:1–25

    Article  PubMed  CAS  Google Scholar 

  • Raczkowski D, Rosenquist AC (1983) Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. J Neurosci 3:1912–1942

    PubMed  CAS  Google Scholar 

  • Rudolph KK, Pasternak T (1996) Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. Cereb Cortex 6:814–822

    Article  PubMed  CAS  Google Scholar 

  • Scannell JW, Sengpiel F, Tovee MJ, Benson PJ, Blakemore C, Young MP (1996) Visual motion processing in the anterior ectosylvian sulcus of the cat. J Neurophysiol 76:895–907

    PubMed  CAS  Google Scholar 

  • Sherk H, Fowler GA (2002) Lesions of extrastriate cortex and consequences for visual guidance during locomotion. Exp Brain Res 144:159–171

    Article  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    PubMed  CAS  Google Scholar 

  • Singer W (1994) Neurobiology. A new job for the thalamus. Nature 369(6480):444–445

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Maja NJ, Movshon JA (2005) Dynamics of motion signaling by neurons in macaque area MT. Nat Neurosci 8:220–228

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. W.H. Freeman, New York, pp 561–690

    Google Scholar 

  • Spear PD (1991) Functions of extrastriate visual cortex in non-primate species. In: Leventhal AG (ed) The neural basis of visual function. Macmillan Press, London, pp 339–370

    Google Scholar 

  • Symonds LL, Rosenquist AC, Edwards SB, Palmer LA (1981) Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience 6:1995–2020

    Article  PubMed  CAS  Google Scholar 

  • Tong L, Kalil RE, Spear PD (1982) Thalamic projections to visual areas of the middle suprasylvian sulcus in the cat. J Comp Neurol 212:103–117

    Article  PubMed  CAS  Google Scholar 

  • Updyke BV (1981) Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei. J Comp Neurol 201:477–506

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve MY, Casanova C (2001) Complex motion integration in the cat PMLS cortex. SFN Abstr 27:165.1

    Google Scholar 

  • Villeneuve MY, Casanova C (2003) On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex. J Neurosci Methods 129:19–31

    Article  PubMed  CAS  Google Scholar 

  • Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Vinje WE, Gallant JL (2002) Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. J Neurosci 22:2904–2915

    PubMed  CAS  Google Scholar 

  • Williams DW, Sekuler R (1984) Coherent global motion percepts from stochastic local motions. Vision Res 24:55–62

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR, Ferrera V, Yo C (1992) A psychophysically motivated model for two-dimensional motion perception. Vis Neurosci 9:79–97

    Article  PubMed  CAS  Google Scholar 

  • Zabouri N, Ptito M, Casanova C (2003) Complex motion sensitivity of neurons in the visual part of the anterior ectosylvian cortex. SFN Abstr 29:179.4

    Google Scholar 

Download references

Acknowledgments

This work was supported by a CIHR grant to C.C. We thank J.A. Movshon for information and formulas related to the novel method of analysis of plaid pattern responses. FRSQ provided most of C.C.’s salary (Chercheur National program). M.Y.V. was supported in part by a FRSQ—Vision Health Network Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Casanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villeneuve, M.Y., Ptito, M. & Casanova, C. Global motion integration in the postero-medial part of the lateral suprasylvian cortex in the cat. Exp Brain Res 172, 485–497 (2006). https://doi.org/10.1007/s00221-006-0357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0357-2

Keywords

Navigation