Skip to main content
Log in

Planning and control of hand orientation in grasping movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Humans grasp objects in a way that facilitates the intended use of the object. We examined how humans grasp a circular control knob in order to turn it in different directions and by different extents. To examine the processes involved in anticipatory planning of grasps, we manipulated advance information about the location of the control knob and the target of the knob-turn. The forearm orientation at the time of grasping depended strongly on the knob-turn, with the direction of the knob-turn having a stronger effect than the extent of the knob-turn. However, the variability of the forearm orientations after the knob-turn remained considerable. Anticipatory forearm orientations began early during the grasping movement. Advance information had no influence on the trajectory of the grasp but affected reaction times and the duration of the grasp. From the results, we conclude that (1) grasps are selected in anticipation of the upcoming knob rotation, (2) the desired hand location and forearm orientation at the time of grasping are specified before the onset of the grasp, and (3) an online programming strategy is used to schedule the preparation of the knob-turn during the execution of the grasp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. More than one exclusion criterion may apply to each trial.

  2. If the assumption of sphericity was violated as indicated by Mauchly's Test of Sphericity, dfs were Greenhouse-Geisser-corrected. For the sake of clarity, we report uncorrected dfs.

  3. We do not report the main effect of knob because fast hand movements in different directions during grasping systematically distorted the supination readings of the accelerometer.

  4. We inferred the finger movements from the movements of the control knobs because finger movements have not been directly recorded.

References

  • Adam JJ, Nieuwenstein JH, Huys R, Paas FG, Kingma H, Willems P, Werry M (2000) Control of rapid aimed hand movements: the one-target advantage. J Exp Psychol Hum Percept Perform 26(1):295–312

    Article  CAS  PubMed  Google Scholar 

  • Aflalo TN, Graziano MSA (2006) Partial tuning of motor cortex neurons to final posture in a free-moving paradigm. Proc Natl Acad Sci 8:2909–2914

    Article  Google Scholar 

  • Brenner JB, Smeets E (1993) A new view on grasping 3(3):237–271

    Google Scholar 

  • Butz MV, Herbort O, Hoffmann J (2007) Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture. Psychol Rev 114(4):1015–1046

    Article  PubMed  Google Scholar 

  • Chamberlin CJ, Magill RA (1989) Preparation and control of rapid, multisegmented responses in simple and choice environments. Res Q Exerc Sport 60(3):256–267

    CAS  PubMed  Google Scholar 

  • Coren S (1993) The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: norms for young adults. Bull Psychon Soc 31:1–3

    Google Scholar 

  • Desmurget M, Prablanc C, Arzi M, Rossetti Y, Paulignan Y, Urquizar C (1996) Integrated control of hand transport and orientation during prehension movements. Exp Brain Res 110:265–278

    Article  CAS  PubMed  Google Scholar 

  • Eliasson A-C, Forssberg H, Ikuta K, Apel I, Westling G, Johansson R (1995) Development of human precision grip: V. anticipatory and triggered grip actions during sudden loading. Exp Brain Res 106:425–433

    Article  CAS  PubMed  Google Scholar 

  • Elsinger CL, Rosenbaum DA (2003) End posture selection in manual positioning: evidence for feedforward modeling based on a movement choice method. Exp Brain Res 152(4):499–509

    Article  PubMed  Google Scholar 

  • Fan J, He J, Helms Tillery S (2006) Control of hand orientation and arm movement during reach and grasp. Exp Brain Res 171(3):283–296

    Article  PubMed  Google Scholar 

  • Favilla M (1997) Reaching movements: concurrency of continuous and discrete programming. NeuroReport 8:3973–3977

    Article  CAS  PubMed  Google Scholar 

  • Fischer MH, Rosenbaum DA, Vaughan J (1997) Speed and sequential effects in reaching. J Exp Psychol Hum Percept Perform 23(2):404–428

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Tresilian J, Wing AM (1993) Coupling of grip force and load force during arm movements with grasped objects. Neurosci Lett 152:53–56

    Article  CAS  PubMed  Google Scholar 

  • Gentilucci M, Negrotti A, Gangitano M (1997) Planning an action. Exp Brain Res 115:116–128

    Article  CAS  PubMed  Google Scholar 

  • Haggard P (1998) Planning of action sequences. Act Psychol 99(2):201–215

    Article  Google Scholar 

  • Herbort O, Butz MV (2007) Encoding complete body models enables task dependent optimal control. Proc Int Jt Conf Neural Netw 20:1639–1644

    Article  Google Scholar 

  • Johnson-Frey SH, McCarty ME, Keen R (2004) Reaching beyond spatial perception: Effects of intended future actions on visually guided prehension. Vis Cogn 11(2–3):371–399

    Article  Google Scholar 

  • Kunde W, Weigelt M (2005) Goal congruency in bimanual object manipulation. J Exp Psychol Human Percep Perform 31(1):145–156

    Article  Google Scholar 

  • Loukopoulos LD, Engelbrecht SF, Berthier NE (2001) Planning of reach-and-grasp movements: effects of validity and type of object information. J Mot Behav 33(3):255–264

    Article  CAS  PubMed  Google Scholar 

  • Mackrous I, Proteau L (2007) Specificity of practice results from differences in movement planning strategies. Exp Brain Res 183(2):181–193

    Article  PubMed  Google Scholar 

  • Marotta JJ, Medendorp WP, Crawford JD (2003) Kinematic rules for upper and lower arm contributions to grasp orientation. J Neurophysiol 90:3816–3820

    Article  CAS  PubMed  Google Scholar 

  • Marteniuk RG, Mackenzie CL, Jeannerod M, Athenes S, Dugas C (1987) Constraints on human arm movement trajectories. Can J Psychol 41(3):365–378

    CAS  PubMed  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nat 414(6859):69–73

    Article  CAS  Google Scholar 

  • Mutsaarts M, Steenbergen B, Bekkering H (2006) Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy. Exp Brain Res 172(2):151–162

    Article  PubMed  Google Scholar 

  • Rosenbaum DA (1980) Human movement initiation: specification of arm, direction and extent. J Exp Psychol Gen 109:444–474

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DA, Jorgensen MJ (1992) Planning macroscopic aspects of manual control. Hum Mov Sci 11(1–2):61–69

    Article  Google Scholar 

  • Rosenbaum DA, Hindorff V, Munro EM (1987) Scheduling and programming of rapid finger sequences: tests and elaborations of the hierarchical editor model. J Exp Psychol Hum Percept Perform 13(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DA, Marchak F, Barnes HJ, Vaughan J, Siotta JD, Jorgensen MJ (1990) Constraints for action selection: overhand versus underhand grips. In: Jeannerod M (ed) Attention and performance Erlbaum. Hillsdale, NJ, pp 321–342

    Google Scholar 

  • Rosenbaum DA, van Heugten CM, Caldwell GE (1996) From cognition to biomechanics and back: the end-state comfort effect and the middle-is-faster effect. Acta Psychol 94:59–85

    Article  CAS  Google Scholar 

  • Rosenbaum DA, Meulenbroek RGJ, Vaughan J, Jansen C (2001) Posture-based motion planning: applications to grasping. Psychol Rev 108(4):709–734

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DA, Vaughan J, Meulenbroek RGJ, Jax S, Cohen R (2009) Smart moves: the psychology of everyday perceptual-motor acts. In: Morsella E, Bargh JA, Gollwitzer PM (eds) Oxford handbook of human action. Oxford University Press, New York, pp 121–135

    Google Scholar 

  • Short MW, Cauraugh JH (1999) Precision hypothesis and the end-state comfort effect. Acta Psychol 100(3):243–252

    Article  CAS  Google Scholar 

  • Steenbergen B, Hulstijn W, Dortmans S (2000) Constraints on grip selection in cerebral palsy: minimising discomfort. Exp Brain Res 134:385–397

    Article  CAS  PubMed  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Rev Neurosci 7(9):907–915

    Article  CAS  Google Scholar 

  • Weigelt M, Kunde W, Prinz W (2006) End-state comfort in bimanual object manipulation. Exp Psychol 53(2):143–148

    PubMed  Google Scholar 

  • Wing AM, Lederman SJ (1998) Anticipating load torques produced by voluntary movements. J Exp Psychol 24(6):1571–1581

    CAS  Google Scholar 

  • Zhang W, Rosenbaum DA (2008) Planning for manual positioning: the end-state comfort effect for manual abduction-adduction. Exp Brain Res 184:383–389

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Emmy Noether program of the German Research Foundation (grant BU1335/3-1) and thank Georg Schüssler for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Herbort.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material (pdf 61 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbort, O., Butz, M.V. Planning and control of hand orientation in grasping movements. Exp Brain Res 202, 867–878 (2010). https://doi.org/10.1007/s00221-010-2191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2191-9

Keywords

Navigation