Skip to main content
Log in

An event-related potential evoked by movement planning is modulated by performance and learning in visuomotor control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Based on a previous exploratory study, the functionality of event-related potentials related to visuomotor processing and learning was investigated. Three pursuit tracking tasks (cursor control either mouse, joystick, or bimanually) revealed the greatest tracking error and greatest learning effect in the bimanual task. The smallest error without learning was found in the mouse task. Error reduction reflected visuomotor learning. In detail, target–cursor distance was reduced continuously, indicating a better fit to a changed direction, whereas response time remained at 300 ms. A central positive ERP component with an activity onset 100 ms after a directional change of the target and most likely generated in premotor areas could be assigned to response planning and execution. The magnitude of this component was modulated by within-and-between-task difficulty and size of the tracking error. Most importantly, the size of this component was sensitive to between-subject performance and increased with visuomotor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bertrand O, Perrin F, Pernier JA (1985) A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalograph Clin Neurophysiol 62:462–464

    Article  CAS  Google Scholar 

  • Blum J, Lutz K, Jäncke L (2007) Coherence and phase locking of intracerebral activation during visuo- and audio-motor learning of continuous tracking movements. Exp Brain Res 182:59–69

    Article  PubMed  Google Scholar 

  • Blum J, Lutz K, Pascual-Marqui R, Murer K, Jäncke L (2008) Coherent intracerebral brain oscillations during learned continuous tracking movements. Exp Brain Res 185:443–451

    Article  PubMed  Google Scholar 

  • Conroy MA, Polich J (2008) Normative variation of P3a and P3b from a large sample. Gender, topography, and response time. J Psychophysiol 21:22–32

    Article  Google Scholar 

  • Deecke L, Heise B, Kornhuber HH, Lang M, Lang W (1984a) Brain potentials associated with voluntary manual tracking: Bereitschaftspotential, conditioned premotion positivity, directed attention potential, and relaxation potential. Ann N Y Acad Sci 425:450–464

    Article  PubMed  CAS  Google Scholar 

  • Deecke L, Bashore T, Brunia CHM, Gruenewald-Zuberbier E, Gruenewald G, Kristeva R (1984b) Movement-associated potentials and motor control. Report of the EPIC VI Motor Panel. Ann N Y Acad Sci 425:398–428

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Exner C, Weniger G, Schmidt-Samoa C, Irle E (2006) Reduced size of the pre-supplementary motor cortex and impaired motor sequence learning in first-episode schizophrenia. Schizophr Res 84:386–396

    Article  PubMed  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoorman J, Blanke L (1990) Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. Tilburg University Press, Tilburg, pp 192–195

    Google Scholar 

  • Ferree TC, Luu P, Russell GS, Tucker DM (2001) Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol 112:536–544

    Article  PubMed  CAS  Google Scholar 

  • Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS, Spencer DD (1999) Functional organization of human supplementar motor cortex studied by electrical stimulation. J Neurosci 11:3656–3666

    Google Scholar 

  • Gehring WJ, Gross B, Coles MGH, Meyer DE, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  • Grafton ST, Schmitt P, Van Horn J, Diedrichsen J (2008) Neural substrates of visuomotor learning based on improved feedback control and prediction. Neuroimage 39:1383–1395

    Article  PubMed  Google Scholar 

  • Hanakawa T, Ikeda A, Sadato N, Okada T, Fukuyama H, Nagamine T, Honda M, Sawamoto N, Yazawa S, Kunieda T, Ohara S, Taki W, Hashimoto N, Yonekura Y, Konishi J, Shibasaki H (2001) Functional mapping of human medial frontal motor areas. The combined use of functional magnetic resonance imaging and cortical stimulation. Exp Brain Res 138:403–409

    Article  PubMed  CAS  Google Scholar 

  • Hazeltine E, Ivry R (2002) Motor skill. In: Ramachandran VS (ed) Encyclopedia of the human brain, vol 3. Academic Press, Amsterdam, pp 183–200

    Google Scholar 

  • Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Pütz B (1996) Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 76:617–621

    PubMed  CAS  Google Scholar 

  • Hill H (2002) Dynamics of coordination within elite rowing crews: evidence from force pattern analysis. J Sports Sci 20:101–117

    Article  PubMed  Google Scholar 

  • Hill H, Raab M (2005) Analysing a complex visuomotor tracking task with brain-electrical event related potentials. Hum Mov Sci 24:1–30

    Article  PubMed  Google Scholar 

  • Kaas JH, Stepniewska I (2002) Motor cortex. In: Ramachandran VS (ed) Encyclopedia of the human brain, vol 3. Academic Press, Amsterdam, pp 159–169

    Google Scholar 

  • Krigolson OE, Holroyd CB (2006) Evidence for hierarchical error processing in the human brain. Neuroscience 137:13–17

    Article  PubMed  CAS  Google Scholar 

  • Krigolson OE, Holroyd CB (2007) Hierarchical error processing: different errors, different systems. Brain Res 1155:70–80

    Article  PubMed  CAS  Google Scholar 

  • Krigolson OE, Holroyd CB, Van Gyn G, Heath M (2008) Electroencephalographic correlates of target and outcome errors. Exp Brain Res 190:401–411

    Article  PubMed  Google Scholar 

  • Lang W, Lang M, Kornhuber A, Kornhuber HH (1986) Electrophysiological evidence for right frontal lobe dominance in spatial visuomotor learning. Arch Ital Biol 124:1–13

    PubMed  CAS  Google Scholar 

  • Lindin M, Zurrón M, Diaz F (2004) Changes in P300 amplitude during an active standard auditory oddball task. Biol Psychol 66:153–167

    Article  PubMed  Google Scholar 

  • Mayer AR, Zimbelman JL, Watanabe YW, Rao SM (2001) Somatotopic organization of the medial wall of the cerebral hemispheres: a 3 Tesla fMRI study. Neuroreport 12:3811–3814

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Reckess GZ, Imamizu H (2001) The cerebellum coordinates eye and hand tracking movements. Nat Neurosci 4:638–644

    Article  PubMed  CAS  Google Scholar 

  • Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94

    Article  PubMed  Google Scholar 

  • Nakamura K, Sakai K, Hikosaka O (1999) Effects of local inactivation of monkey medial frontal cortex in learning of sequential procedures. J Neurophysiol 82:1063–1068

    PubMed  CAS  Google Scholar 

  • Pan J, Takeshita T, Morimoto K (2000) P300 habituation from auditory single-stimulus and oddball paradigms. Int J Psychophysiol 37:149–153

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. IJBM 1:75–86

    Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24C:91–95

    Google Scholar 

  • Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson JR, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000) Guidelines for using human event-related potentials to study cognition Recording standards and publication criteria. Psychophysiology 37:127–152

    Article  PubMed  CAS  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  PubMed  Google Scholar 

  • Ramnani N, Passingham RE (2001) Changes in the human brain during rhythm learning. J Cogn Neurosci 7:952–966

    Article  Google Scholar 

  • Ravden D, Polich J (1999) On P300 measurement stability: habituation, intra-trial block variation, and ultradian rhythms. Biol Psychol 51:59–76

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Pütz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18(5):1827–1840

    PubMed  CAS  Google Scholar 

  • Sanes JN (2003) Neocortical mechanisms in motor learning. Curr Opin Neurobiol 13:225–231

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki H, Barrett G, Halliday E, Halliday AM (1980) Components of the movement-related cortical potential and their scalp topography. Electroencephalograph Clin Neurophysiol 49:213–226

    Article  CAS  Google Scholar 

  • Staines WR, Padilla M, Knight RT (2002) Frontal-parietal event-related potential changes associated with practising a novel visuomotor task. Cogn Brain Res 13:195–202

    Article  Google Scholar 

  • Steward O (2000) Functional neuroscience. Springer, New York, pp 257–271

    Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80:2162–2176

    PubMed  CAS  Google Scholar 

  • Wintink AJ, Segalowitz SJ, Cudmore LJ (2001) Task complexity and habituation effects on frontal P300 topography. Brain Cogn 46:307–311

    Article  PubMed  CAS  Google Scholar 

  • Wulf G, Schmidt RA (1997) Variability of practice and implicit motor learning. J Exp Psychol Learn Mem Cogn 23:987–1006

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Markus Raab and Prof. Alexander Strobel for their excellent comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Hill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 580 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, H. An event-related potential evoked by movement planning is modulated by performance and learning in visuomotor control. Exp Brain Res 195, 519–529 (2009). https://doi.org/10.1007/s00221-009-1821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1821-6

Keywords

Navigation