Skip to main content
Log in

Joint-specific disruption of control during arm movements in Parkinson’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The leading joint hypothesis (LJH) suggests distinct types of control (leading and subordinate) at different joints during multi-joint movements. Taking into account specific features of movements in Parkinson’s disease (PD), the LJH predicts distinct effect of PD on control of leading and subordinate joints: impaired interaction torque (INT) regulation should be emphasized at the subordinate joints, and impaired generation of muscle torque (MUS) magnitude should be more pronounced at the leading joint. This prediction was tested by studying three tasks of horizontal shoulder-elbow movements in PD patients and age-matched controls: cyclic line drawing, cyclic point-to-point, and discrete pointing movements. Each task included movements in different directions, providing both shoulder-lead and elbow-lead control patterns. Torque analysis supported the prediction, specifically for Tasks 2 and 3 in which movement targets were chosen to emphasize the shoulder- and elbow-lead control patterns. Patients did not exploit INT for motion generation as successfully as controls did, but only at the subordinate joint. Underproduction of MUS by PD patients was more apparent at the leading than subordinate joint. The results support joint-specific effect of PD on movement control. They also suggest that dyscoordination of joint motions in PD stems predominantly from impaired control of subordinate joints, while bradykinesia is associated more with control of the leading than subordinate joint. Possible contribution of the revealed impairments in joint control to some other movement features in PD is discussed. The study demonstrates the efficiency of the LJH application for revealing changes in joint control caused by motor disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baroni A, Benvenuti F, Fantini L, Pantaleo T, Urbani F (1984) Human ballistic arm abduction movements: effects of L-dopa treatment in Parkinson’s disease. Neurology 34:868–876

    PubMed  CAS  Google Scholar 

  • Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD (1996) Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain 119:661–674

    Article  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 114(Pt 1A):215–231

    PubMed  Google Scholar 

  • Castiello U, Bennett KMB, Bonfiglioli C, Peppard RF (2000) The reach-to-grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia 38:46–59

    Article  PubMed  CAS  Google Scholar 

  • Chaffin DB, Andersson GBJ (1984) Occupational biomechanics. Wiley, New York, pp 64–65

    Google Scholar 

  • Contreras-Vidal JL, Gold DR (2004) Dynamic estimation of hand position is abnormal in Parkinson’s disease. Parkinsonism Relat Disord 10:501–506

    Article  PubMed  Google Scholar 

  • Day BL, Dick JP, Marsden CD (1984) Patients with Parkinson’s disease can employ a predictive motor strategy. J Neurol Neurosurg Psychiatry 47:1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Demirci M, Grill S, McShane L, Hallett M (1997) A mismatch between kinesthetic and visual perception in Parkinson’s disease. Ann Neurol 41(6):781–788

    Article  PubMed  CAS  Google Scholar 

  • Dounskaia N (2005) The internal model and the leading joint hypothesis: implications for control of multijoint movements. Exp Brain Res 166:1–16

    Article  PubMed  Google Scholar 

  • Dounskaia N (2007) Kinematic invariants during cyclical arm movements. Biol Cybern 96:147–163

    Article  PubMed  Google Scholar 

  • Dounskaia N, Swinnen SP, Walter CB, Spaepen AJ, Verschueren SMP (1998) Hierarchical control of different elbow-wrist coordination patterns. Exp Brain Res 121:239–254

    Article  PubMed  CAS  Google Scholar 

  • Dounskaia N, Ketcham CJ, Stelmach GE (2002a) Influence of biomechanical constraints on horizontal arm movements. Motor Control 6:366–387

    PubMed  Google Scholar 

  • Dounskaia N, Ketcham CJ, Stelmach GE (2002b) Commonalities and differences in control of a large set of drawing movements. Exp Brain Res 146:11–25

    Article  PubMed  CAS  Google Scholar 

  • Dounskaia N, Ketcham C, Leis BC, Stelmach GE (2005) Disruptions in joint control during drawing arm movements in Parkinson’s disease. Exp Brain Res 164:311–322

    Article  PubMed  Google Scholar 

  • Dounskaia N, Fradet L, Lee G, Leis BC, Adler CH (2009) Submovements during pointing movements in Parkinson’s disease. Exp Brain Res 193:529–544

    Article  PubMed  Google Scholar 

  • Fahn S, Elton RL (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M (eds) Recent developments in Parkinson’s disease, vol 2. MacMillan Health Care Information, New Jersey, pp 153–163

    Google Scholar 

  • Feldman AG (1986) Once more for the equilibrium point hypothesis (λ model). J Mot Behav 18:17–54

    PubMed  CAS  Google Scholar 

  • Flash T, Inzelberg R, Schectman E, Korcyzn AD (1992) Kinematic analysis of upper limb trajectories in Parkinson’s disease. Exp Neurol 118:215–226

    Article  PubMed  CAS  Google Scholar 

  • Flowers KA (1976) Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain 99:269–310

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state, a practical method for grading the cognitive state of patients for the clinicians. J Psych Res 2:189–198

    Article  Google Scholar 

  • Fregni F, Boggio PS, Bermpohl F, Maia F, Rigonatti SP, Barbosa ER, Pascual-Leone A (2006) Immediate placebo effect in Parkinson’s disease—is the subjective relief accompanied by objective improvement? Eur Neuro 56:222–229

    Article  Google Scholar 

  • Galloway JC, Koshland GF (2002) General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements. Exp Brain Res 142:163–180

    Article  PubMed  Google Scholar 

  • Gentilucci M, Negrotti A (1999) Planning and executing an action in Parkinson’s disease. Mov Disord 14:69–79

    Article  PubMed  CAS  Google Scholar 

  • Goble J, Zhang Y, Shimansky Y, Sharma S, Dounskaia N (2007) Directional biases reveal utilization of arm’s biomechanical properties for optimization of motor behavior. J Neurophysiol 98:1240–1252

    Article  PubMed  Google Scholar 

  • Hallett M, Khoshbin S (1980) A physiological mechanism of bradykinesia. Brain 103:301–304

    Article  PubMed  CAS  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    PubMed  CAS  Google Scholar 

  • Jobst EE, Melnick ME, Byl NN, Dowling GA, Aminoff MJ (1997) Sensory perception in Parkinson’s disease. Arch Neurol 54:450–454

    PubMed  CAS  Google Scholar 

  • Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J (1995) A defect of kinesthesia in Parkinson’s disease. Mov Disord 10:450–465

    Article  Google Scholar 

  • Krebs HI, Hogan N, Hening W, Adamovich SV, Poizner H (2001) Procedural motor learning in Parkinson’s disease. Exp Brain Res 141:425–437

    Article  PubMed  CAS  Google Scholar 

  • Latash ML, Aruin ASMB, Neyman I, Nicholas JJ (1995) Anticipatory postural adjustments during self inflicted and predictable perturbations in Parkinson’s disease. J Neurol, Neurosurg, and Psychiatry 58:326–334

    Article  CAS  Google Scholar 

  • Lee G, Fradet L, Ketcham C, Dounskaia N (2007) Efficient control of arm movements in advanced age. Exp Brain Res 177:78–94

    Article  PubMed  Google Scholar 

  • Levin O, Ouamer M, Steyvers M, Swinnen SP (2001) Directional tuning effects during cyclical two-joint arm movements in the horizontal plane. Exp Brain Res 141:471–484

    Article  PubMed  CAS  Google Scholar 

  • Mardia KV (1972) Statistics of directional data. Academic Press, Dublin

    Google Scholar 

  • Maschke M, Gomez CM, Tuite PJ (2003) Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 126:2312–2322

    Article  PubMed  Google Scholar 

  • Montgomery EB Jr, Nuessen J, Gorman DS (1991) Reaction time and movement velocity abnormalities in Parkinson’s disease under different task conditions. Neurology 41:1476–1481

    PubMed  Google Scholar 

  • Poizner H, Feldman AG, Levin MF, Berkinblit MB, Hening WA, Patel A, Adamovich SV (2000) The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson’s patients during reaching movements. Exp Brain Res 133:279–292

    Article  PubMed  CAS  Google Scholar 

  • Rand MK, Stelmach GE, Bloedel JR (2000) Movement accuracy constraints in Parkinson’s disease patients. Neuropsychologia 38:203–212

    Article  PubMed  CAS  Google Scholar 

  • Rickards C, Cody FW (1997) Proprioceptive control of wrist movements in Parkinson’s disease. Reduced muscle vibration-induced errors. Brain 120:977–990

    Article  PubMed  Google Scholar 

  • Schmidt RC, Treffner PJ, Shaw BK, Turvey MT (1992) Dynamical aspects of learning an interlimb rhythmic movement pattern. J Mot Behav 24:67–84

    PubMed  CAS  Google Scholar 

  • Schneider JS, Diamond SG, Markham CH (1987) Parkinsons disease: sensory and motor problems in arms and hands. Neurology 37:951–956

    PubMed  CAS  Google Scholar 

  • Seidler RD, Alberts JL, Stelmach GE (2001) Parkinson’s disease affects the ability to control multijoint movements. Exp Brain Res 140:335–344

    Article  PubMed  CAS  Google Scholar 

  • Sheridan M, Flowers K (1990) Movement variability and bradykinesia in Parkinson’s disease. Brain 113:1149–1161

    Article  PubMed  Google Scholar 

  • Stelmach GE, Worringham CJ, Strand EA (1986) Movement preparation in Parkinson’s disease. Brain 109:1179–1194

    Article  PubMed  Google Scholar 

  • Stelmach GE, Teasdale N, Phillips J, Worringham CJ (1989) Force production characteristics in Parkinson’s disease. Exp Brain Res 76:165–172

    Article  PubMed  CAS  Google Scholar 

  • Teasdale N, Phillips J, Stelmach GE (1990) Temporal movement control in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 53:862–868

    Article  PubMed  CAS  Google Scholar 

  • Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (1997) Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol 146:159–170

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  PubMed  CAS  Google Scholar 

  • Van Gemmert AWA, Teulings HL, Contreras-Vidal JL, Stelmach GE (1999) Parkinson’s disease and the control of size and speed in handwriting. Neuropsychologia 37:685–694

    Article  PubMed  Google Scholar 

  • Wierzbicka MM, Wiegner AW, Logigian EL, Young RR (1991) Abnormal most-rapid isometric contractions in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:210–216

    Article  PubMed  CAS  Google Scholar 

  • Wing AM (1988) A comparison of the rate of pinch grip force increases and decreases in Parkinson bradykinesia. Neuropsychologia 26:479–482

    Article  PubMed  CAS  Google Scholar 

  • Zia S, Cody F, O’Boyle D (2000) Joint position sense is impaired by Parkinson’s disease. Ann Neurol 47:218–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The study was supported by National Institute of Health (grant NS 43502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Dounskaia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fradet, L., Lee, G., Stelmach, G. et al. Joint-specific disruption of control during arm movements in Parkinson’s disease. Exp Brain Res 195, 73–87 (2009). https://doi.org/10.1007/s00221-009-1752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1752-2

Keywords

Navigation