Skip to main content

Hand Function in Parkinson’s Disease

  • Chapter
  • First Online:
Hand Function

Abstract

Parkinson’s disease (PD) patients have a number of functional hand impairments. The latency and rate of isometric force generation is impaired in PD. Motor dysfunction is also related to impaired integration of sensory feedback and motor output. Moreover, PD patients exhibit sensory deficits such as decreased spatial and temporal tactile discrimination thresholds of the fingertips. Impairments of reaching and grasping are seen as patients tend to exhibit difficulty in movement initiation to a target. There are deficits in hand preshaping to object geometry. There is a lack of coordination between the timing of the reach and grasp components. Patients have an overall dependence on visual cues to control movement. They exhibit impairments in the planning of where to place their digits, resulting in suboptimal performance of object manipulation. It is hypothesized that predictive force control deficits are a result of central impairments associated with the generation and/or retrieval of sensorimotor memories for movement planning.

Clinical aspects of hand function include resting, postural or internal tremor, bradykinesia, and rigidity. Elements of the unified Parkinson’s disease rating scale (UPDRS) are the best way to measure deficits in hand function. Choreiform dyskinesias and dystonia may interfere with hand function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriguez-Oroz MC, Lage PM, Sanchez-Mut J, Lamet I, Pagonabarraga J, Toledo JB, Garcia-Garcia D, Clavero P, Samaranch L, Irurzun C, Matsubara JM, Irigoien J, Bescos E, Kulisevsky J, Perez-Tur J, Obeso JA. Homocysteine and cognitive impairment in Parkinson’s disease: a biochemical, neuroimaging, and genetic study. Mov Disord. 2009;24:1437–44.

    Article  PubMed  Google Scholar 

  2. Rivlin-Etzion M, Marmor O, Heimer G, Raz A, Nini A, Bergman H. Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin Neurobiol. 2006;16:629–37.

    Article  CAS  PubMed  Google Scholar 

  3. Brown P, Marsden CD. Bradykinesia and impairment of EEG desynchronization in Parkinson’s disease. Mov Disord. 1999;14:423–9.

    Article  CAS  PubMed  Google Scholar 

  4. Benecke R, Rothwell JC, Dick JP, Day BL, Marsden CD. Disturbance of sequential movements in patients with Parkinson’s disease. Brain. 1987;110(Pt 2):361–79.

    Article  PubMed  Google Scholar 

  5. Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience. 2001;104:1027–41.

    Article  CAS  PubMed  Google Scholar 

  6. Flowers KA. Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain. 1976;99:269–310.

    Article  CAS  PubMed  Google Scholar 

  7. Poizner H, Feldman AG, Levin MF, Berkinblit MB, Hening WA, Patel A, Adamovich SV. The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson’s patients during reaching movements. Exp Brain Res. 2000;133:279–92.

    Article  CAS  PubMed  Google Scholar 

  8. Schettino LF, Adamovich SV, Hening W, Tunik E, Sage J, Poizner H. Hand preshaping in Parkinson’s disease: effects of visual feedback and medication state. Exp Brain Res. 2006;168:186–202.

    Article  PubMed  Google Scholar 

  9. Tunik E, Feldman AG, Poizner H. Dopamine replacement therapy does not restore the ability of Parkinsonian patients to make rapid adjustments in motor strategies according to changing sensorimotor contexts. Parkinsonism Relat Disord. 2007;13:425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castiello U. The neuroscience of grasping. Nat Rev Neurosci. 2005;6:726–36.

    Article  CAS  PubMed  Google Scholar 

  11. Prodoehl J, Corcos DM, Vaillancourt DE. Basal ganglia mechanisms underlying precision grip force control. Neurosci Biobehav Rev. 2009;33:900–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex. 2005;15:913–20.

    Article  PubMed  Google Scholar 

  13. Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.

    Article  CAS  PubMed  Google Scholar 

  14. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.

    Article  CAS  PubMed  Google Scholar 

  15. Holsapple JW, Preston JB, Strick PL. The origin of thalamic inputs to the “hand” representation in the primary motor cortex. J Neurosci. 1991;11:2644–54.

    Article  CAS  PubMed  Google Scholar 

  16. Nambu A, Yoshida S, Jinnai K. Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp Brain Res. 1988;71:658–62.

    Article  CAS  PubMed  Google Scholar 

  17. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64:20–4.

    Article  PubMed  Google Scholar 

  18. Spraker MB, Yu H, Corcos DM, Vaillancourt DE. Role of individual basal ganglia nuclei in force amplitude generation. J Neurophysiol. 2007;98:821–34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vaillancourt DE, Yu H, Mayka MA, Corcos DM. Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. NeuroImage. 2007;36:793–803.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jordan N, Sagar HJ, Cooper JA. A component analysis of the generation and release of isometric force in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1992;55:572–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stelmach GE, Worringham CJ. The preparation and production of isometric force in Parkinson’s disease. Neuropsychologia. 1988;26:93–103.

    Article  CAS  PubMed  Google Scholar 

  22. Vaillancourt DE, Slifkin AB, Newell KM. Intermittency in the visual control of force in Parkinson’s disease. Exp Brain Res. 2001;138:118–27.

    Article  CAS  PubMed  Google Scholar 

  23. Mortimer JA, Webster DD. Evidence for a quantitative association between EMG stretch responses and Parkinsonian rigidity. Brain Res. 1979;162:169–73.

    Article  CAS  PubMed  Google Scholar 

  24. Rothwell JC, Obeso JA, Traub MM, Marsden CD. The behaviour of the long-latency stretch reflex in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1983;46:35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cantello R, Tarletti R, Varrasi C, Cecchin M, Monaco F. Cortical inhibition in Parkinson’s disease: new insights from early, untreated patients. Neuroscience. 2007;150:64–71.

    Article  CAS  PubMed  Google Scholar 

  26. Dietz V, Hillesheimer W, Freund HJ. Correlation between tremor, voluntary contraction, and firing pattern of motor units in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1974;37:927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milner-Brown HS, Fisher MA, Weiner WJ. Electrical properties of motor units in Parkinsonism and a possible relationship with bradykinesia. J Neurol Neurosurg Psychiatry. 1979;42:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain J Neurol. 2001;124:2131–46.

    Article  CAS  Google Scholar 

  29. Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73:820–35.

    Article  CAS  PubMed  Google Scholar 

  30. Sathian K, Zangaladze A, Green J, Vitek JL, DeLong MR. Tactile spatial acuity and roughness discrimination: impairments due to aging and Parkinson’s disease. Neurology. 1997;49:168–77.

    Article  CAS  PubMed  Google Scholar 

  31. Artieda J, Pastor MA, Lacruz F, Obeso JA. Temporal discrimination is abnormal in Parkinson’s disease. Brain. 1992;115(Pt 1):199–210.

    Article  PubMed  Google Scholar 

  32. Konczak J, Li KY, Tuite PJ, Poizner H. Haptic perception of object curvature in Parkinson’s disease. PLoS One. 2008;3:e2625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, Volkmann J, Maschke M. Proprioception and motor control in Parkinson’s disease. J Mot Behav. 2009;41:543–52.

    Article  PubMed  Google Scholar 

  34. Maschke M, Gomez CM, Tuite PJ, Konczak J. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain. 2003;126:2312–22.

    Article  PubMed  Google Scholar 

  35. Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Mov Disord. 2003;18:231–40.

    Article  PubMed  Google Scholar 

  36. Seiss E, Praamstra P, Hesse CW, Rickards H. Proprioceptive sensory function in Parkinson’s disease and Huntington’s disease: evidence from proprioception-related EEG potentials. Exp Brain Res. 2003;148:308–19.

    Article  CAS  PubMed  Google Scholar 

  37. Lee MS, Lyoo CH, Lee MJ, Sim J, Cho H, Choi YH. Impaired finger dexterity in patients with Parkinson’s disease correlates with discriminative cutaneous sensory dysfunction. Mov Disord. 2010;25:2531–5.

    Article  PubMed  Google Scholar 

  38. Nakamura R, Nagasaki H, Narabayashi H. Disturbances of rhythm formation in patients with Parkinson’s disease: part I. Characteristics of tapping response to the periodic signals. Percept Mot Skills. 1978;46:63–75.

    Article  CAS  PubMed  Google Scholar 

  39. Stegemoller EL, Simuni T, MacKinnon C. Effect of movement frequency on repetitive finger movements in patients with Parkinson’s disease. Mov Disord. 2009;24:1162–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stelmach GE, Garcia-Colera A, Martin ZE. Force transition control within a movement sequence in Parkinson’s disease. J Neurol. 1989;236:406–10.

    Article  CAS  PubMed  Google Scholar 

  41. Frischer M. Voluntary vs autonomous control of repetitive finger tapping in a patient with Parkinson’s disease. Neuropsychologia. 1989;27:1261–6.

    Article  CAS  PubMed  Google Scholar 

  42. Gebhardt A, Vanbellingen T, Baronti F, Kersten B, Bohlhalter S. Poor dopaminergic response of impaired dexterity in Parkinson’s disease: bradykinesia or limb kinetic apraxia? Mov Disord. 2008;23:1701–6.

    Article  PubMed  Google Scholar 

  43. O’Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain. 1996;119(Pt 1):51–70.

    Article  PubMed  Google Scholar 

  44. Quencer K, Okun MS, Crucian G, Fernandez HH, Skidmore F, Heilman KM. Limb-kinetic apraxia in Parkinson disease. Neurology. 2007;68:150–1.

    Article  CAS  PubMed  Google Scholar 

  45. Stewart KC, Fernandez HH, Okun MS, Alberts JL, Malaty IA, Rodriguez RL, Hass CJ. Effects of dopaminergic medication on objective tasks of deftness, bradykinesia and force control. J Neurol. 2009;256:2030.

    Article  PubMed  Google Scholar 

  46. Stegemoller EL, Allen DP, Simuni T, MacKinnon CD. Rate-dependent impairments in repetitive finger movements in patients with Parkinson’s disease are not due to peripheral fatigue. Neurosci Lett. 2010;482:1–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Desmurget M, Grafton ST, Vindras P, Grea H, Turner RS. Basal ganglia network mediates the control of movement amplitude. Exp Brain Res Exp Hirnforsch Exp Cereb. 2003;153:197–209.

    Article  CAS  Google Scholar 

  48. Jahanshahi M, Brown RG, Marsden CD. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain J Neurol. 1992;115(Pt 2):539–64.

    Article  Google Scholar 

  49. Stelmach GE, Worringham CJ, Strand EA. Movement preparation in Parkinson’s disease. The use of advance information. Brain J Neurol. 1986;109(Pt 6):1179–94.

    Article  Google Scholar 

  50. Santello M, Soechting JF. Gradual molding of the hand to object contours. J Neurophysiol. 1998;79:1307–20.

    Article  CAS  PubMed  Google Scholar 

  51. Winges SA, Weber DJ, Santello M. The role of vision on hand preshaping during reach to grasp. Exp Brain Res. 2003;152:489–98.

    Article  PubMed  Google Scholar 

  52. Ansuini C, Begliomini C, Ferrari T, Castiello U. Testing the effects of end-goal during reach-to-grasp movements in Parkinson’s disease. Brain Cogn. 2010;74:169–77.

    Article  PubMed  Google Scholar 

  53. Schettino LF, Rajaraman V, Jack D, Adamovich SV, Sage J, Poizner H. Deficits in the evolution of hand preshaping in Parkinson’s disease. Neuropsychologia. 2004;42:82–94.

    Article  PubMed  Google Scholar 

  54. Alberts JL, Tresilian JR, Stelmach GE. The co-ordination and phasing of a bilateral prehension task. The influence of Parkinson’s disease. Brain. 1998;121(Pt 4):725–42.

    Article  PubMed  Google Scholar 

  55. Jackson SR, Jackson GM, Harrison J, Henderson L, Kennard C. The internal control of action and Parkinson’s disease: a kinematic analysis of visually-guided and memory-guided prehension movements. Exp Brain Res. 1995;105:147–62.

    Article  CAS  PubMed  Google Scholar 

  56. Rand MK, Smiley-Oyen AL, Shimansky YP, Bloedel JR, Stelmach GE. Control of aperture closure during reach-to-grasp movements in Parkinson’s disease. Exp Brain Res. 2006;168:131–42.

    Article  CAS  PubMed  Google Scholar 

  57. Jackson GM, Jackson SR, Hindle JV. The control of bimanual reach-to-grasp movements in hemiparkinsonian patients. Exp Brain Res Exp Hirnforsch Exp Cereb. 2000;132:390–8.

    Article  CAS  Google Scholar 

  58. Negrotti A, Secchi C, Gentilucci M. Effects of disease progression and L-dopa therapy on the control of reaching-grasping in Parkinson’s disease. Neuropsychologia. 2005;43:450–9.

    Article  CAS  PubMed  Google Scholar 

  59. Castiello U, Bennett KM, Scarpa M. The reach to grasp movement of Parkinson’s disease subjects. In: Bennett KM, Castiello U, editors. Insights into the reach to grasp movement. Amsterdam: Elsevier; 1994. p. 215–37.

    Google Scholar 

  60. Flowers K. Lack of prediction in the motor behaviour of Parkinsonism. Brain. 1978;101:35–52.

    Article  CAS  PubMed  Google Scholar 

  61. Stern Y, Mayeux R, Rosen J, Ilson J. Perceptual motor dysfunction in Parkinson’s disease: a deficit in sequential and predictive voluntary movement. J Neurol Neurosurg Psychiatry. 1983;46:145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ansuini C, Giosa L, Turella L, Altoe G, Castiello U. An object for an action, the same object for other actions: effects on hand shaping. Exp Brain Res Exp Hirnforsch Exp Cereb. 2008;185:111–9.

    Article  Google Scholar 

  63. Castiello U, Bennett K, Bonfiglioli C, Lim S, Peppard RF. The reach-to-grasp movement in Parkinson’s disease: response to a simultaneous perturbation of object position and object size. Exp Brain Res Exp Hirnforsch Exp Cereb. 1999;125:453–62.

    Article  CAS  Google Scholar 

  64. Rand MK, Lemay M, Squire LM, Shimansky YP, Stelmach GE. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson’s disease. Exp Brain Res. 2010;201:509–25.

    Article  PubMed  Google Scholar 

  65. Lukos J, Ansuini C, Santello M. Choice of contact points during multidigit grasping: effect of predictability of object center of mass location. J Neurosci. 2007;27:3894–903.

    Article  CAS  PubMed  Google Scholar 

  66. Lukos JR, Ansuini C, Santello M. Anticipatory control of grasping: independence of sensorimotor memories for kinematics and kinetics. J Neurosci. 2008;28:12765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lukos JR, Lee D, Poizner H, Santello M. Anticipatory modulation of digit placement for grasp control is affected by Parkinson’s disease. PLoS One. 2010;5:e9184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Fellows SJ, Noth J, Schwarz M. Precision grip and Parkinson’s disease. Brain. 1998;121(Pt 9):1771–84.

    Article  PubMed  Google Scholar 

  69. Ingvarsson PE, Gordon AM, Forssberg H. Coordination of manipulative forces in Parkinson’s disease. Exp Neurol. 1997;145:489–501.

    Article  CAS  PubMed  Google Scholar 

  70. Nowak DA, Hermsdorfer J. Coordination of grip and load forces during vertical point-to-point movements with a grasped object in Parkinson’s disease. Behav Neurosci. 2002;116:837–50.

    Article  PubMed  Google Scholar 

  71. Muratori LM, McIsaac TL, Gordon AM, Santello M. Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson’s disease. Exp Brain Res. 2008;185:41–52.

    Article  PubMed  Google Scholar 

  72. Santello M, Muratori L, Gordon AM. Control of multidigit grasping in Parkinson’s disease: effect of object property predictability. Exp Neurol. 2004;187:517–28.

    Article  PubMed  Google Scholar 

  73. Gordon AM, Ingvarsson PE, Forssberg H. Anticipatory control of manipulative forces in Parkinson’s disease. Exp Neurol. 1997;145:477–88.

    Article  CAS  PubMed  Google Scholar 

  74. Nowak DA, Hermsdorfer J. Predictive and reactive control of grasping forces: on the role of the basal ganglia and sensory feedback. Exp Brain Res. 2006;173:650–60.

    Article  PubMed  Google Scholar 

  75. Wenzelburger R, Zhang BR, Pohle S, Klebe S, Lorenz D, Herzog J, Wilms H, Deuschl G, Krack P. Force overflow and levodopa-induced dyskinesias in Parkinson’s disease. Brain. 2002b;125:871–9.

    Article  PubMed  Google Scholar 

  76. Johansson RS. Somatosensory signals and sensorimotor transformations in reactive control. In: Franzen O, et al., editors. Somesthesis and the neurobiology of the somatosensory cortex. Basel: Bi rkhäus e r Verlag Basel; 1996. p. 271–82.

    Chapter  Google Scholar 

  77. Westling G, Johansson RS. Factors influencing the force control during precision grip. Exp Brain Res. 1984;53:277–84.

    Article  CAS  PubMed  Google Scholar 

  78. Rearick MP, Stelmach GE, Leis B, Santello M. Coordination and control of forces during multifingered grasping in Parkinson’s disease. Exp Neurol. 2002;177:428–42.

    Article  PubMed  Google Scholar 

  79. Boecker H, Lee A, Muhlau M, Ceballos-Baumann A, Ritzl A, Spilker ME, Marquart C, Hermsdorfer J. Force level independent representations of predictive grip force-load force coupling: a PET activation study. NeuroImage. 2005;25:243–52.

    Article  CAS  PubMed  Google Scholar 

  80. Pope P, Wing AM, Praamstra P, Miall RC. Force related activations in rhythmic sequence production. NeuroImage. 2005;27:909–18.

    Article  PubMed  Google Scholar 

  81. Prodoehl J, Yu H, Wasson P, Corcos DM, Vaillancourt DE. Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. J Neurophysiol. 2008;99:3042–51.

    Article  PubMed  Google Scholar 

  82. Vaillancourt DE, Mayka MA, Thulborn KR, Corcos DM. Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. NeuroImage. 2004;23:175–86.

    Article  PubMed  Google Scholar 

  83. Ehrsson HH, Fagergren A, Johansson RS, Forssberg H. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. J Neurophysiol. 2003;90:2978–86.

    Article  PubMed  Google Scholar 

  84. Escola L, Michelet T, Douillard G, Guehl D, Bioulac B, Burbaud P. Disruption of the proprioceptive mapping in the medial wall of parkinsonian monkeys. Ann Neurol. 2002;52:581–7.

    Article  PubMed  Google Scholar 

  85. Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124:558–70.

    Article  CAS  PubMed  Google Scholar 

  86. Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain J Neurol. 2000;123(Pt 2):394–403.

    Article  Google Scholar 

  87. Samuel M, Ceballos-Baumann AO, Blin J, Uema T, Boecker H, Passingham RE, Brooks DJ. Evidence for lateral premotor and parietal overactivity in Parkinson’s disease during sequential and bimanual movements. A PET study. Brain J Neurol. 1997;120(Pt 6):963–76.

    Article  Google Scholar 

  88. Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain J Neurol. 2002;125:276–89.

    Article  Google Scholar 

  89. Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126:451–61.

    Article  CAS  PubMed  Google Scholar 

  90. Turner RS, Grafton ST, McIntosh AR, DeLong MR, Hoffman JM. The functional anatomy of parkinsonian bradykinesia. NeuroImage. 2003;19:163–79.

    Article  PubMed  Google Scholar 

  91. Grafton ST. Contributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol. 2004;14:715–9.

    Article  CAS  PubMed  Google Scholar 

  92. Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain. 1995;118(Pt 4):913–33.

    Article  PubMed  Google Scholar 

  93. Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 1992;32:151–61.

    Article  CAS  PubMed  Google Scholar 

  94. Catalan MJ, Ishii K, Honda M, Samii A, Hallett M. A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain J Neurol. 1999;122(Pt 3):483–95.

    Article  Google Scholar 

  95. Glickstein M, Stein J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991;14:480–2.

    Article  CAS  PubMed  Google Scholar 

  96. Pessiglione M, Guehl D, Rolland AS, Francois C, Hirsch EC, Feger J, Tremblay L. Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci. 2005;25:1523–31.

    Article  CAS  PubMed  Google Scholar 

  97. Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 2002;25:525–31.

    Article  CAS  PubMed  Google Scholar 

  98. Gatev P, Darbin O, Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord. 2006;21:1566–77.

    Article  PubMed  Google Scholar 

  99. Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H. Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J Neurosci Off J Soc Neurosci. 2004;24:6003–10.

    Article  CAS  Google Scholar 

  100. Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci Off J Soc Neurosci. 2000;20:8559–71.

    Article  CAS  Google Scholar 

  101. Raz A, Frechter-Mazar V, Feingold A, Abeles M, Vaadia E, Bergman H. Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys. J Neurosci Off J Soc Neurosci. 2001;21:RC128.

    Article  CAS  Google Scholar 

  102. Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 1998;21:32–8.

    Article  CAS  PubMed  Google Scholar 

  103. Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol. 2001;11:689–95.

    Article  CAS  PubMed  Google Scholar 

  104. Soikkeli R, Partanen J, Soininen H, Paakkonen A, Riekkinen P Sr. Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol. 1991;79:159–65.

    Article  CAS  PubMed  Google Scholar 

  105. Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30:357–64.

    Article  CAS  PubMed  Google Scholar 

  106. Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:507–20.

    Article  CAS  PubMed  Google Scholar 

  107. Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 1991;547:142–51.

    CAS  PubMed  Google Scholar 

  108. Nini A, Feingold A, Slovin H, Bergman H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol. 1995;74:1800–5.

    Article  CAS  PubMed  Google Scholar 

  109. Hutchison WD, Lozano AM, Tasker RR, Lang AE, Dostrovsky JO. Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res Exp Hirnforsch Exp Cereb. 1997;113:557–63.

    Article  CAS  Google Scholar 

  110. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci Off J Soc Neurosci. 2000;20:7766–75.

    Article  CAS  Google Scholar 

  111. Merello M, Balej J, Delfino M, Cammarota A, Betti O, Leiguarda R. Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease. Mov Disord. 1999;14:45–9.

    Article  CAS  PubMed  Google Scholar 

  112. Swann N, Poizner H, Houser M, Gould S, Greenhouse I, Caj W, Strunk J, George J, Aron A. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J Neuroscience. 2011;31:5721–9.

    Article  CAS  Google Scholar 

  113. Brown P, Eusebio A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord Off J Mov Disord Soc. 2008;23:12–20; quiz 158.

    Article  Google Scholar 

  114. Flink TA, Stelmach GE. Prehension characteristics in Parkinson’s disease patients. In: Nowak DA, Hermsdorfer J, editors. Sensorimotor control of grasping. Cambridge: Cambridge University Press; 2009. p. 311–25.

    Chapter  Google Scholar 

  115. Klockgether T, Dichgans J. Visual control of arm movement in Parkinson’s disease. Mov Disord. 1994;9:48–56.

    Article  CAS  PubMed  Google Scholar 

  116. Ashkan K, Wallace B, Bell BA, Benabid AL. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 1993–2003: where are we 10 years on? Br J Neurosurg. 2004;18:19–34.

    Article  CAS  PubMed  Google Scholar 

  117. Deuschl G, Fogel W, Hahne M, Kupsch A, Muller D, Oechsner M, Sommer U, Ulm G, Vogt T, Volkmann J. Deep-brain stimulation for Parkinson’s disease. J Neurol. 2002;249(Suppl 3):III/36–9.

    PubMed  Google Scholar 

  118. Deuschl G, Wenzelburger R, Kopper F, Volkmann J. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: a therapy approaching evidence-based standards. J Neurol. 2003;250(Suppl 1):I43–6.

    Article  PubMed  Google Scholar 

  119. Pahwa R, Lyons KE, Wilkinson SB, Simpson RK Jr, Ondo WG, Tarsy D, Norregaard T, Hubble JP, Smith DA, Hauser RA, Jankovic J. Long-term evaluation of deep brain stimulation of the thalamus. J Neurosurg. 2006;104:506–12.

    Article  PubMed  Google Scholar 

  120. Volkmann J. Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol. 2004;21:6–17.

    Article  PubMed  Google Scholar 

  121. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.

    Article  CAS  PubMed  Google Scholar 

  122. Boucai L, Cerquetti D, Merello M. Functional surgery for Parkinson’s disease treatment: a structured analysis of a decade of published literature. Br J Neurosurg. 2004;18:213–22.

    Article  CAS  PubMed  Google Scholar 

  123. Schettino LF, Van Erp E, Hening W, Lessig S, Song D, Barba D, Poizner H. Deep brain stimulation of the subthalamic nucleus facilitates coordination of hand preshaping in Parkinson’s disease. Int J Neurosci. 2009;119:1905–24.

    Article  CAS  PubMed  Google Scholar 

  124. Nowak DA, Topka H, Tisch S, Hariz M, Limousin P, Rothwell JC. The beneficial effects of subthalamic nucleus stimulation on manipulative finger force control in Parkinson’s disease. Exp Neurol. 2005;193:427–36.

    Article  PubMed  Google Scholar 

  125. Wenzelburger R, Zhang BR, Poepping M, Schrader B, Muller D, Kopper F, Fietzek U, Mehdorn HM, Deuschl G, Krack P. Dyskinesias and grip control in Parkinson’s disease are normalized by chronic stimulation of the subthalamic nucleus. Ann Neurol. 2002a;52:240–3.

    Article  PubMed  Google Scholar 

  126. Fellows SJ, Kronenburger M, Allert N, Coenen VA, Fromm C, Noth J, Weiss PH. The effect of subthalamic nucleus deep brain stimulation on precision grip abnormalities in Parkinson’s disease. Parkinsonism Relat Disord. 2006;12:149–54.

    Article  PubMed  Google Scholar 

  127. Nowak DA, Tisch S, Hariz M, Limousin P, Topka H, Rothwell JC. Sensory timing cues improve akinesia of grasping movements in Parkinson’s disease: a comparison to the effects of subthalamic nucleus stimulation. Mov Disord. 2006;21:166–72.

    Article  PubMed  Google Scholar 

  128. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93.

    Article  PubMed  Google Scholar 

  129. Fregni F, Simon DK, Wu A, Pascual-Leone A. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry. 2005;76:1614–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M. Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord. 2006;21:325–31.

    Article  PubMed  Google Scholar 

  131. Gruner U, Eggers C, Ameli M, Sarfeld AS, Fink GR, Nowak DA. 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J Neural Transm. 2010;117:207–16.

    Article  PubMed  Google Scholar 

  132. Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain J Neurol. 1994;117(Pt 4):847–58.

    Article  Google Scholar 

  133. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–403.

    Article  CAS  PubMed  Google Scholar 

  134. Duvoisin RD. Parkinson’s disease, a guide for patient and family. New York: Raven Press; 1984.

    Google Scholar 

  135. Duvoisin RC, Sage JI. The spectrum of Parkinson’s disease. In: Chokroverty S, editor. Movement disorders. New York: PMA Publishing Corp; 1990. p. 159–77.

    Google Scholar 

  136. Sage JI, Mark MH, editors. Practical neurology of the elderly, vol. 2. New York: Marcel Dekker, Inc; 1996.

    Google Scholar 

  137. Sage JI. Fluctuations of nonmotor symptoms. In: Factor SA, Weiner WJ, editors. Parkinson’s disease: diagnosis and clinical management. New York: Demos Medical Publishing; 2002. p. 455–63.

    Google Scholar 

  138. Fahn S, Elton RL, Members of the UPDRS Development Committee. Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M, editors. Recent developments in Parkinson’s disease, vol. 2. Florham Park: Macmillan; 1987. p. 153–63, 293–304.

    Google Scholar 

  139. Sage JI. Pain in Parkinson’s Disease. In: Reich, SG, section ed. Curr Treat Options Neurol. 2004;6:191–200.

    Article  PubMed  Google Scholar 

  140. McHale DM, Sage JI, Sonsalla PK, Vitagliano D. Complex dystonia of Parkinson’s disease; clinical features and relation to plasma levodopa profile. Clin Neuropharmacol. 1990;13:164–70.

    Article  CAS  PubMed  Google Scholar 

  141. Hillen ME, Sage JI. Nonmotor fluctuations in patients with Parkinson’s disease. Neurology. 1996;47:1180–3.

    Article  CAS  PubMed  Google Scholar 

  142. Sage JI, Kortis HI, Sommer W. Evidence for the role of spinal cord systems in Parkinson’s disease associated pain. Clin Neuropharmacol. 1990;13:171–4.

    Article  CAS  PubMed  Google Scholar 

  143. Sage JI, Mark MH. Basic mechanisms of motor fluctuations. Neurology. 1994;44(suppl 6):S10–4.

    CAS  PubMed  Google Scholar 

  144. Sage JI, Mark MH, McHale DM, Sonsalla PK, Vitagliano D. Benefits of monitoring plasma levodopa in Parkinson’s disease patients with drug-induced chorea. Ann Neurol. 1991;29:623–8.

    Article  CAS  PubMed  Google Scholar 

  145. Walters A, McHale D, Sage J, Hening W, Bergen M. A blinded study of the suppressibility of involuntary movements in Huntington’s chorea, tardive dyskinesia and L-DOPA induced chorea. Clin Neuropharmacol. 1990;13:236–40.

    Article  CAS  PubMed  Google Scholar 

  146. Hammon PS, Makeig S, Poizner H, Todorov E, de Sa V. Extracting trajectories and target endpoints from human EEG during a reaching task. IEEE Signal Process. 2008;25:69–77.

    Article  Google Scholar 

  147. Brandeis D, Michel CM, Koenig T, Gianotti LRR. Integration of electrical neuroimaging with other functional imaging methods. In: Michel CM, et al., editors. Electrical neuroimaging. Cambridge: Cambridge University Press; 2009. p. 215–32.

    Chapter  Google Scholar 

  148. Mulert C, Lemieux L, editors. EEG – fMRI: physiological basis, technique, and applications. Berlin/Heidelberg: Springer; 2010.

    Google Scholar 

  149. Ullsperger M, Debener S, editors. Simultaneous EEG and fMRI: recording, analysis, and application. New York: Oxford University Press; 2010.

    Google Scholar 

  150. Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol. 2006;197:244–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Supported in part by NIH grant #2 R01 NS036449 (HP)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Poizner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lukos, J.R., Poizner, H., Sage, J. (2019). Hand Function in Parkinson’s Disease. In: Duruöz, M. (eds) Hand Function. Springer, Cham. https://doi.org/10.1007/978-3-030-17000-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17000-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16999-2

  • Online ISBN: 978-3-030-17000-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics