Skip to main content

Advertisement

Log in

Influence of pathologic and simulated visual dysfunctions on the postural system

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Visual control has an influence on postural stability. Whilst vestibular, somatosensoric and cerebellar changes have already been frequency analytically parameterised with posturography, sufficient data regarding the visual system are still missing. The aim of this study was to evaluate the influence of pathologic and simulated visual dysfunctions on the postural system by calculating the frequency analytic representation of the visual system throughout the frequency range F1 (0.03–0.1 Hz) of Fourier analysis. The study was divided into two parts. In the first part, visually handicapped subjects and subjects with normal vision were investigated with posturography regarding postural stability (stability effect, Fourier spectrum of postural sway, etc.) with open and closed eyes. The visually impaired and the normal group differed significantly in the frequency range F1 (p = 0.002). Significant differences of the postural stability between both groups were found only in the test position with open eyes (NO). The healthy group showed a significant loss of stability, whereas the impaired group showed an increased stability due to sufficient somatosensoric processes. Visually handicapped persons can compensate the visual information deficit through improved peripheral–vestibular and somatosensoric perception and cerebellar processing. In the second part, subjects with normal vision were examined under simulated visual conditions, e.g., hyperopia (3.0 D), reduced visual acuity (VA = 20/200), yoke prisms (4 cm/m) and pursuits (pendulum). Changes in postural parameters due to simulations have been compared to a standard situation (open eyes [NO], fixation distance 3 m). Visual simulations showed influence on frequency range F1. Compared to the standard situation, significant differences have been found in reduced visual acuity, pursuits and yoke prisms. A loss of stability was measured for simulated hyperopia, pendulum and yoke prisms base down. Stability regulation can be understood as a multi-sensoric process by the visual, vestibular, somatosensoric and cerebellar system. Reduced influence of a single subsystem is compensated by the other subsystems. Obviously the main part of reduced visual input is compensated by the vestibular system. Moreover, the body sway, represented by the stability indicator, increased in this situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelhafiz AH, Austin CA (2003) Vision factors should be assessed in older people presenting with falls or hip fracture. Age Ageing 32:26–30

    Article  PubMed  Google Scholar 

  • Allison LK, Kiemel T, Jeka JJ (2006) Multisensory reweighting of vision and touch is intact in healthy and fall-prone older adults. Exp Brain Res 175:342–352

    Article  PubMed  Google Scholar 

  • Anand V, Buckley JG, Scally A, Elliot DB (2003) Postural stability changes in the elderly with cataract simulation and refractive blur. Invest Ophthalmol Vis Sci 44:4670–675

    Article  PubMed  Google Scholar 

  • Asseman F, Caron O, Cremieux J (2005) Effects of the removal of vision on body sway during different postures in elite gymnasts. Int J Sports Med 26(2):116–119

    Article  PubMed  CAS  Google Scholar 

  • Assman F, Gahery Y (2005) Effect of head position and visual condition on balance control in inverted stance. Neurosci Lett 375(2):134–137

    Article  CAS  Google Scholar 

  • Berencsi A, Ishihara M, Imanaka K (2005) The functional role of central and peripheral vision in the control to posture. Hum Mov Sci 24(5–6):689–709

    Article  PubMed  Google Scholar 

  • Black O, Wall C, Rockette H, Kitch R (1982) Normal subject postural sway during the Romberg test. Am J Otolaryngol 3:309–318

    Article  PubMed  CAS  Google Scholar 

  • Bobrova EV, Kucher VI, Levik IUS, Bogacheva IN (2007) Nonlinear analysis of the dynamics of the human balance control system during fixation and smooth pursuits of visual target. Biofizika 52(2):355–361

    PubMed  CAS  Google Scholar 

  • Bronstein AM, Buckwell D (1997) Automatic control of postural sway by visual motion parallax. Exp Brain Res 113(2):243–248

    Article  PubMed  CAS  Google Scholar 

  • Brannan S, Dewar C, Sen J, Clarke D, Marshall T, Murray PI (2003) A prospective study of the rate of falls before and after cataract surgery. Br J Ophthalmol 87:560–562

    Article  PubMed  CAS  Google Scholar 

  • Brooke-Wavell K, Perrett LK, Howarth PA, Haslam RA (2002) Influence of the visual environment on the postural stability in healthy older woman. Gerontology 48:293–297

    Article  PubMed  CAS  Google Scholar 

  • Deshpande N, Patla AE (2007) Visual–vestibular interaction during goal directed locomotion: effects of aging and blurring vision. Exp Brain Res 176(1):43–53

    Article  PubMed  Google Scholar 

  • De Witt G (1972) Optic versus vestibular and proprioceptive impulses, measured by posturometry. Agressologie 13(Suppl B):75–79

    Google Scholar 

  • Diener HC, Dichgans J, Bacher M, Gompf B (1984) Quantification of postural sway in normals and patients with cerebellar disease. EEG Clin Neurophysiol 57:134–142

    Article  CAS  Google Scholar 

  • Elliott DB, Patla AE, Flanagan GJ, Spaulding S, Rietdyk S, Strong G, Brown S (1995) The Waterloo vision and mobility study: postural control strategies in subjects with ARM. Ophthalmic Physiol Opt 15:553–559

    Article  PubMed  CAS  Google Scholar 

  • Eto M (2005) The relationship between visual perception and postural control in falls of the elderly living in local communities. Nippon Ronen Igakkai Zasshi 42(1):106–111

    PubMed  Google Scholar 

  • Ferdjallah M, Harris GF, Wertsch JJ (1997) Instantaneous spectral characteristics of postural stability, using time-frequency analysis. Proceedings of the 19th annual conference of the IEEE engineering in medicine and biology 19:1675–1678

    Article  Google Scholar 

  • Fushiki H, Kobayashi K, Asai M, Watanabe Y (2005) Influence of visual induced self-motion on postural stability. Acta Otolaryngol 125(1):60–64

    Article  PubMed  Google Scholar 

  • Gagey PM, Toupet M (1998) L´amplitude des oscillations posturales dans la bande de frequence 0.2 Hertz. Etude chez le sujet normal. Publications de l´Institut de Posturologie Paris

  • Gautier G, Thouvarecq R, Chollet D (2007) Visual and postural control of an arbitrary posture: the handstand. J Sports Sci 25(11):1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Glasauer S, Schneider E, Jahn K, Strupp M, Brandt T (2005) How the eyes move the body. Neurology 65(8):1291–1293

    Article  PubMed  CAS  Google Scholar 

  • Goldstein E Bruce (2002) Wahrnehmungsphysiologie. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Guerraz M, Sakellari V, Bronstein AM (2000) Influence of motion parallax in the control of spontaneous body sway. Exp Brain Res 131:244–252

    Article  PubMed  CAS  Google Scholar 

  • Hafstrom A, Fransson PA, Karlberg M, Ledin T, Magnusson M (2002) Visual influence on postural control, with and without visual motion feedback. Acta Otolaryngol 122:392–397

    Article  PubMed  Google Scholar 

  • Horak FB (2006) Postural orientation and equilibrium: what de we need to know about neuralcontrol of balance to prevent falls? Age Ageing Suppl 2:7–11

    Google Scholar 

  • Ivers RQ, Cumming RG, Mitchell P, Attebo K (1998) Visual impairment and falls in older adults: the Blue Mountains eye study. J Am Geriatr Soc 46:58–64

    PubMed  CAS  Google Scholar 

  • Jeka J, Allison L, Saffer M, Zhang Y, Carver S, Kiemel T (2006) Sensory reweight with translational visual stimuli in young and elderly adults: the role of state-dependent noise. Exp Brain Res 174(3):517–527

    Article  PubMed  Google Scholar 

  • Jendrusch G, Brach M Sinnesleistungen im sport. In: Mechling H, Munzert J (Hrsg.) (2003) Handbuch Bewegungswissenschaft-Bewegungslehre. Verlag Karl Hofmann, Schondorf 175–196

  • Jennings JAM (2006) Funktionaloptometrie: ein kritischer Überblick, Teil 1 und 2. DOZ, Heidelberg, 07/08

    Google Scholar 

  • Kahle W (2002) Atlas der Anatomie, band 3 nervensystem und Sinnesorgane. Deutscher Taschenbuch, München

    Google Scholar 

  • Kaplan M, Carmody D (1997) Extent of use of prisms by optometric practitioners. J Opt Vis Dev 86–90

  • Kapoor N, Ciuffreda KJ (2002) Vision disturbances following traumatic brain injury. Curr Treat Options Neurol 4(4):271–280

    Article  PubMed  Google Scholar 

  • Kapteyn TS, de Wit G (1972) Posturography as an auxiliary in vestibular investigation. Acta Otolaryngol 73:104–111

    Article  PubMed  CAS  Google Scholar 

  • Kapteyn TS, Bles W, Njiokiktjien CJ, Kodde L, Massen CH, Mol M (1983) Standardization in platform stabilometry being a part of posturography. Agressologie 24:321–326

    PubMed  CAS  Google Scholar 

  • Kawakita T, Kuno S, Miyake Y, Watanabe S (2000) Body sway induced dy depth linear viction in reference to central and peripheral visual field. Jpn J Physiol 50(3):315–321

    Article  PubMed  CAS  Google Scholar 

  • Klinke R, Silbernagel S (1994) Lehrbuch der Physiologie. Georg Thieme, Stuttgart

    Google Scholar 

  • Kohen-Raz R (1991) Application of tetra-ataxiametric posturography in clinical and developmental diagnosis. Percept Mot Skills 73:635–656

    Article  PubMed  CAS  Google Scholar 

  • Kollmitzer J, Ebenbichler GR, Sabo A, Kerschan K, Bochdansky T (2000) Effects of back extensor training versus balance training on postural control. Med Sci Sports Exerc 32:1770–1776

    Article  PubMed  CAS  Google Scholar 

  • Kuno S, Kawakita T, Kawakami O, Miyake Y, Watanabe (1999) Postural adjustment response to deth direction moving patterns produced by virtual reality graphics. Jpn J Physiol 49(5):417–424

    Article  PubMed  CAS  Google Scholar 

  • Laughlin PJ, Redfern MS (2001) Spectral analysis of visually induced postural sway in healthy elderly and young subjects. IEEE Trans Rehab Eng 9:24–30

    Article  Google Scholar 

  • Liebermann DG, Katz L, Hughes MD, Bartlett RM, McClements J, Franks IM (2002) Advances in the application of information technology to sport performance. J Sports Sci 20(10):755–769

    Article  PubMed  Google Scholar 

  • Liu B, Kong W, Zou Y (2007) The sensory organization in the posture stability with interruption induced by standing foam in normal subjects. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 21(4):162–165

    PubMed  CAS  Google Scholar 

  • Lord SR, Menz HB (2000) Visual contributions to postural stability in older adults. Gerontology 46:306–310

    Article  PubMed  CAS  Google Scholar 

  • Manchester D, Woollacott M, Zederbauer-Hylton N, Marin O (1989) Visual, vestibular and somatosensory contributions to balance control in the older adult. J Gerontol 44: M118–M127

    PubMed  CAS  Google Scholar 

  • Mauritz KH, Dietz V (1980) Characteristics of postural instability by ischemic blocking of leg afferents. Exp Brain Res 38:117–119

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Schwaigart G, Maurer C, Bluemle A (2005) Human postural response to motion of real and virtual visual environments under different support base conditions. Exp Brain Res 167:535–556

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Shindo M, Kuno S, Kawakita T, Watanabe S (2001) Postural control responses sitting on unstable board during visual stimulation. Acta Astronaut 49(3–10):131–136

    Article  PubMed  CAS  Google Scholar 

  • Naoki S, Ikuya, Murakami S, Hiroaki G (2005) Large-field visual motion directly induces an involuntary rapid manual following response. J Neurosci 25(20):4941–4951

    Article  CAS  Google Scholar 

  • Oppenheim U, Kohen-Raz R, Alex D, Kohen-Raz A, Azarya M (1999) Postural characteristics of diabetic neuropathy. Diabetes Care 22:328–332

    Article  PubMed  CAS  Google Scholar 

  • Padula WV, Argyris S, Ray J (1994) Visual evoked potentials (VEP) evaluating treatment for post-trauma vision syndrome (PTVS) in patients with traumatic brain injuries (TBI). Brain Inj 8(2):125–133

    Article  PubMed  CAS  Google Scholar 

  • Patat A, Le Go A, Foulhoux P (1985) Dose response relationship of vindeburnol based on spectral analysis of posturographic recordings. Eur J Clin Pharmacol 29:455–459

    Article  PubMed  CAS  Google Scholar 

  • Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 107:143–1163

    Article  Google Scholar 

  • Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097–1118

    PubMed  CAS  Google Scholar 

  • Poulain I, Giraudet G (2007) Age-related changes of visual contribution in posture control. Gait Posture 16(4)

  • Previc FH, Mullen TJ (1990–91) A comparison of the latencies of visually induced postural change and self-motion perception. J Vestib Res 1(3):317–323

    Google Scholar 

  • Ravaioli E, Oie SK, Kiemel T, Chiari L, Jeka J (2005) Nonlinear postural control in response to visual translation. Exp Brain Res 160:450–459

    Article  PubMed  Google Scholar 

  • Rawstron JA, Burley CD, Elder MJ (2005) A systematic Review of the applicability an effiacy of eye exercises. J Pediatr Ophthalmol Strabismus 42(2):82–88

    PubMed  Google Scholar 

  • Rost R (2001) Lehrbuch der Sportmedizin. Deutscher Ärzte Verlag, Köln Sally SL, Gurnsey R (2007) Foveal and exta-foveal orientation discrimination. Exp Brain Res 18 (Epub ahead of print)

  • Sally SL, Gurnsey R (2007) Foveal and exta-foveal orientation discrimination. Exp Brain Res 183(3):351–360

    Article  PubMed  Google Scholar 

  • Santangelo V, Spence C (2007) Assessing the effect of verbal working memory load on visu-spatial exogenous orienting. Neurosci Lett 413(2):105–109

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Segal O, Barkana Y, Schwesig R, Avni I, Morad Y (2005) The effect of cataract surgery on postural control. Invest Ophthalmol Vis Sci 46:920–924

    Article  PubMed  Google Scholar 

  • Schwesig R (2006) Das posturale System in der Lebensspanne. Hamburg, Dr. Kovac, 123–199

  • Shumway-Cook A, Wollacott MH (1985) The growth of stability: postural control from a development perspective. J Mot Behav 17:131–147

    PubMed  CAS  Google Scholar 

  • Sparto P, Redfern MS, Jasko JG, Casselbrant ML, Mandel EM, Furman JM (2006) The influence of dynamic visual cues for postural control in children aged 7–12 years. Exp Brain Res 168:505–516

    Article  PubMed  Google Scholar 

  • Strupp M, Glasauer S, Jahn K, Schneider E, Krafczyk S, Brandt T (2003) Eye movements and balance. Ann NY Acad Sci 1004:352–358

    Article  PubMed  Google Scholar 

  • Stoffregen T (1985) Flow structure versus retinal location in the optical control of stance. J Exp Psychol Hum Percept Perform 11:554–565

    Article  PubMed  CAS  Google Scholar 

  • Stoll W, Most E, Tegenthoff M (2004) Schwindel und Gleichgewichtsstörungen. 4. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Taguchi K (1978) Spectral analysis of movement of the center of gravity in vertiginous and ataxic patients. Agressologie 19:69–70

    PubMed  CAS  Google Scholar 

  • Tanaka H, Nakashizuka M, Uetake T, Itoh T (2000) The effects of visual input on postural control mechanisms. J Hum Ergol 29(1–2):15–22

    CAS  Google Scholar 

  • Turano K, Rubin GS, Herdman SJ, Chee E, Fried LP (1994) Visual stabilization of posture in the elderly: fallers vs. nonfallers. Optom Vis Sci 71:761–769

    Article  PubMed  CAS  Google Scholar 

  • Weissberg E, Lyons SA, Richman JE (2000) Fixation dysfunction with intermittent saccadic intrusions managed by yoked prisms: a case report. Optometry 71(3):183–188

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Juergen Grein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, M., Grein, HJ., Wicher, C. et al. Influence of pathologic and simulated visual dysfunctions on the postural system. Exp Brain Res 186, 305–314 (2008). https://doi.org/10.1007/s00221-007-1233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1233-4

Keywords

Navigation