Skip to main content
Log in

The role of sensory pathways in Pavlovian conditioning in rabbit

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In an earlier experiment we showed that selective attention plays a critical role in rabbit eye blink conditioning (Steele-Russell et al. in Exp Brain Res 173:587–602, 2006). The present experiments are concerned to examine the extent to which visual recognition processes are a separate component from the motor learning that is also involved in conditioning. This was achieved by midline section of the optic chiasma which disconnected the direct retinal projections via the brainstem to the cerebellar oculomotor control system. By comparing both normal and chiasma-sectioned rabbits it was possible to determine the dependence or independence of conditioning on the motor expression of the eye blink response during training. Both normal and chiasma-sectioned animals were tested using a multiple test battery to determine the effect of this redirection of the visual input pathways on conditioning. All animals were first tested for any impairment in visual capability following section of the optic chiasma. Despite the loss of 90% of retinal ganglion cell fibres, no visual impairment for either intensity or pattern vision was seen in the chiasma animals. Also no difference was seen in nictitating membrane (NM) conditioning to an auditory signal between normal and chiasma animals. Testing for motor learning to a visual signal, the chiasma rabbits showed a complete lack of any NM conditioning. However the sensory tests of visual conditioning showed that chiasma-sectioned animals had completely normal sensory recognition learning. These results show that NM Pavlovian conditioning involves anatomically separate and independent sensory recognition and motor output components of the learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CR:

Conditional response

CS:

Conditional stimulus

DPFl:

Dorsal paraflocculus

HVI:

Cerebellar vermal lobus simplex

HVII:

Vermal lobule

ITI:

Intertrial interval

LDN:

Lateral dorsal nucleus of the accessory optic system

LGN:

Lateral geniculate nucleus of the thalamus

LTN:

Lateral terminal nucleus of the accessory optic system

P cells:

Retinal ganglion cells which in monkey and human project to the parvo- cellular layers of the LGN

M cell:

Retinal ganglion cells which in monkey and human project to the magno-cellular layers of the LGN

MST:

Region in parietal cortex anterior to MT

MT:

Region in parietal extrastriate cortex

MTN:

Medial terminal nucleus of the accessory optic system

NOT:

Nucleus of the optic tract

NP:

Pontine nucleus

SPL:

Sound pressure level

S+ :

Correct stimulus

S :

Incorrect stimulus

SPEM:

Smooth pursuit eye movements

UR:

Unconditional response

X cells:

Retinal ganglion cells with small receptive fields tuned to patterns

Y cells:

Retinal ganglion cells with large receptive fields tuned to motion

V1 :

Brodman area 17 of the visual cortex

V2 :

Brodman area 18 of the visual cortex

VOR:

Vestibulo ocular reflex

References

  • Anderson KV, O’Steen WK (1971) Photically evoked responses in rats exposed to continuous light. Exp Neurol 30:555–564

    Article  PubMed  CAS  Google Scholar 

  • Attwell PJE, Cooks SF, Yeo CH (2002) Cerebellar function in consolidation of a motor memory. Neuron 34:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Balleine BW, Killcross S (2006) Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci 29(5):272–279

    Article  PubMed  CAS  Google Scholar 

  • Behr C (1925) Die Lehre von den Pupillenbewegungen. Berlin, p 378

  • Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in the posterior parietal cortex related to selective attention. J Neurophysiol 46:755–772

    PubMed  CAS  Google Scholar 

  • Büttner U, Büttner-Ennever JA (1988) Present concepts of oculomotor organization. In: Büttner-Ennever JA (ed) Neuroanatomy of the oculomotor system (reviews of oculomotor research, vol 2). Elsevier Press, Amsterdam, New York, Oxford, pp 3–32

    Google Scholar 

  • Chow KL, Douville A, Mascetti GG, Grobstein P (1977) Receptive field characteristics of neurons in a visual area of the rabbit temporal cortex. J Comp Neurol 171:135–146

    Article  PubMed  CAS  Google Scholar 

  • Christie D, Steele-Russell I (1989) The effects of anteromedial cortex lesions on pattern discrimination learning. Behav Brain Res 35:135–146

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H (1977) Optokinetic and vestibulo-ocular reflexes in dark-reared rabbits. Exp Brain Res 27:287–300

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H (1981) The oculomotor system of the rabbit and its plasticity (studies of brain function, vol 5). Springer, Berlin, p 240

    Google Scholar 

  • Everitt BJ, Cardinal RN, Hall J, Parkinson JA, Robbins TW (2000) Differential involvement of amygdala subsystems in appetitive conditioning and drug addiction. In: Aggleton JP (ed) The Amygdala: a functional analysis. Oxford University Press, New York, pp 353–390

  • Gamble JE, Patton HD (1953) Pulmonary edema and hemorrhage from preoptic lesions in rats. Am J Physiol 172:623–631

    PubMed  CAS  Google Scholar 

  • Giolli RA, Creel DJ (1974) Inheritance and variability in the organisation of the retinogeniculate projections in pigmented and albino rats. Brain Res 78:335–339

    Article  PubMed  CAS  Google Scholar 

  • Giolli RA, Guthrie MD (1969) The primary optic projections in the rabbit. An experimental degeneration study. J Comp Neurol 136:99–126

    Article  PubMed  CAS  Google Scholar 

  • Giolli RA, Guthrie MD (1971) Organization of the subcortical projections of visual areas I and II in the rabbit. An experimental degeneration study. J Comp Neurol 142:351–376

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M, Cohen JL, Dixon B, Gibson A, Hollins M, Labossiere E, Robinson F (1980) Corticopontine visual projections in macaque monkeys. J Comp Neurol 190:209–229

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M, May JG, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Article  PubMed  CAS  Google Scholar 

  • Hall RD, Lindholm EP (1974) Organisation of the motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38

    Article  Google Scholar 

  • Hesslow G, Yeo CH (2001) The functional anatomy of skeletal conditioning In: Moore JW (ed) A neuroscientist’s guide to classical conditioning. Springer, Berlin, pp 86–146

  • Holland PC (1990) Forms of memory in Pavlovian conditioning. In: McGaugh JL, Weinberger NM, Lynch G (eds) Brain organization and memory: cells, systems, and circuits. Oxford University Press, New York, pp 78–105

  • Holland PC, Gallagher M (1999) Amygdala circuitry in attentional and representational processes. Trends Cogn Sci 3:65–73

    Article  PubMed  Google Scholar 

  • Hughes A (1971) Topographical relationships between the anatomy and physiology of the rabbit visual system. Doc Ophthalmol 30:33–159

    Article  PubMed  CAS  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life styles: comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology VII/5. Springer, Berlin

    Google Scholar 

  • Hughes A, Vaney DI (1982) The organization of the binocular cortex in the primary visual area of the rabbit. J Comp Neurol 204:151–162

    Article  PubMed  CAS  Google Scholar 

  • Hughes A, Wilson ME (1969) Callosal terminations along the boundary between visual areas I and II in the rabbit. Brain Res 12:19–25

    Article  PubMed  CAS  Google Scholar 

  • Kralj-Hans I, Baiser JS, Glickstein M (2007) Independent roles for the dorsal paraflocculus and vermal lobule VII of the cerebellum in visuomotor coordination. Exp Brain Res 177:209–222

    Article  PubMed  Google Scholar 

  • Krettik JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192

    Article  Google Scholar 

  • Lee T, Kim JJ (2004) Differential effects of cerebellar, amygdalar, and hippocampal lesions on classical eyeblink conditioning in rats. J Neurosci 24(13):3242–3250

    Article  PubMed  CAS  Google Scholar 

  • Leonard CM (1969) The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res 12:321–343

    Article  PubMed  CAS  Google Scholar 

  • Lynch JC (1980) The functional organisation posterior parietal association cortex. Behav Brain Sci 3:485–534

    Article  Google Scholar 

  • Lynch JC, McLaren JW (1982) The contribution of parieto-occipital association cortex to the control of slow eye movements. In: Lennerstrand G, Zee DS, Keller E (eds) Functional basis of ocular mobility disorders. Pergamon Press, Oxford, pp 501–510

    Google Scholar 

  • Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40:362–389

    PubMed  CAS  Google Scholar 

  • Maire FW, Patton HD (1956a) Neural substrate change involved in the genesis of ‘preoptic pulmonary edema’, gastric erosions and behavior changes. Am J Physiol 184:345–350

    PubMed  CAS  Google Scholar 

  • Maire FW, Patton HD (1956b) Role of he splanchnic nerve and the adrenal medulla in the genesis of ‘preoptic pulmonary edema’. Am J Physiol 184:351–355

    PubMed  CAS  Google Scholar 

  • Mathers LH, Douville A, Chow KL (1977) Anatomical studies of a temporal visual area in the rabbit. J Comp Neurol 17:147–156

    Article  Google Scholar 

  • Montero VM, Murphy EH (1976) Cortico-cortical connections from the striate cortex in the rabbit. Anat Rec 184:483

    Google Scholar 

  • Morcuende S, Delgado-Garcia J-M, Ugolini G (2002) Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the obicularis oculi muscle in the rat. J Neurosci 22:8808–8818

    PubMed  CAS  Google Scholar 

  • Oyster CW (1968) The analysis of image motion by the rabbit retina. J Physiol Lond 199:613–635

    PubMed  CAS  Google Scholar 

  • Provis JM, Watson CRR (1981) The distribution of the ipsilateral and contralateral projecting ganglion cells in the retina of the pigmented rabbit. Exp Brain Res 44:82–92

    Article  PubMed  CAS  Google Scholar 

  • Reep RL, Corvin JV, Hashimoto A, Watson RT (1984) Afferent connections of medial precentral cortex in the rat. Neurosci Lett 44:247–252

    Article  PubMed  CAS  Google Scholar 

  • Riss W, Jackway JS (1970) A perspective on the fundamental retinal projections of vertebrates. Brain Behav Evol 3:30–55

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of the frontal eye fields. J. Neurophysiol 32:637–648

    PubMed  CAS  Google Scholar 

  • Steele-Russell I, van Hof MW, Hobbelen JF (1978) Visual discrimination in corpus callosum-sectioned rabbits. Physiol Behav 21:629–663

    Article  PubMed  CAS  Google Scholar 

  • Steele-Russell I, van Hof MW, Pereira SC, James G (1984a) The role of the uncrossed optic fibres in rabbit vision. Behav Brain Res 12:232–233

    Article  Google Scholar 

  • Steele-Russell I, Hobbelen JF, van Hof MW, Pereira SC (1984b) The effect of devascularization of the visual cortex on visual function in the rabbit. Behav Brain Res 14:1, 69–80

    Google Scholar 

  • Steele-Russell I, van Hof MW, van der Steen J, Collewijn H (1987) Visual and oculomotor function in optic chiasma-sectioned rabbits. Exp Brain Res 66:61–63

    Article  PubMed  CAS  Google Scholar 

  • Steele-Russell I, Russell MI, Castiglioni AJ, Reuter JA, van Hof MW (2006) Attentional factors and Pavlovian conditioning. Exp Brain Res 173:587–602

    Article  PubMed  Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in the posterior vermis of monkey cerebellum. J. Neurophysiol 46:1120–1139

    PubMed  CAS  Google Scholar 

  • Thompson RF (2005) In search of memory traces. Ann Rev Psychol 56:1–3

    Article  Google Scholar 

  • Thompson RF, Krupa DJ (1994) Organisation of memory traces in the mammalian brain. Ann Rev Neurosci 17:519–549

    Article  PubMed  CAS  Google Scholar 

  • Towns LC, Giolli RA, Haste DA (1977) Corticocortical fiber connections of the rabbit visual cortex: a fiber degeneration study. J Comp Neurol 173:537–560

    Article  PubMed  CAS  Google Scholar 

  • van der Steen J, Steele-Russell I, James G (1985) Permanent changes in eye-head coordination after both unilateral frontal eye field lesions in monkeys and functional recovery. Behav Brain Res 16:2–3, 230–231

    Google Scholar 

  • van der Steen H, Steele-Russell I, James GO (1986) Effects of unilateral frontal eye-field lesions on eye-head coordination in monkey. J Neurophysiol 55:696–714

    PubMed  Google Scholar 

  • van Hof MW, Steele-Russell I (1977) Binocular vision in the rabbit. Physiol Behav 19:121–128

    Article  PubMed  Google Scholar 

  • van Hof MW, Lagers-van Haselen GC (1973) The retinal fixation area in the rabbit. Exp Neurol 41:218–221

    Article  PubMed  Google Scholar 

  • van Hof MW, van Hof-van Duin J, Hobbelen JF (1983) Visual discrimination after bilateral removal of the visual cortex in the rabbit. Behav Brain Res 9:257–262

    Article  PubMed  Google Scholar 

  • van Kan PL, Houk JC, Gibson AR (1993) Output organisation of the intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    PubMed  Google Scholar 

  • van Sluyters RC, Stewart DL (1974) Binocular neurons of the rabbit’s visual cortex: receptive field characteristics. Exp Brain Res 19:196–204

    PubMed  Google Scholar 

  • Wagman IH, Krieger HP, Papatheodorou CA, Bender M (1961) Eye movements elicited by surface and depth stimulation of the frontal lobe of Macaca mulata. J Comp Neurol 117:179–188

    Article  PubMed  CAS  Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci 5(4):279–290

    Article  PubMed  CAS  Google Scholar 

  • Werka T, Steele-Russell I (1982) Emotional factors involved in classical conditioning of the nictitating membrane response in rabbits. Behav Brain Res 5:1, 126

    Google Scholar 

  • Yeo AG (1974) The acquisition of conditioned suppression as a function interstimulus interval duration. Q J Psychol 26:405–416

    Article  CAS  Google Scholar 

  • Yeo CH, Hardiman MJ, Moore JW, Steele-Russell I (1984) Trace conditioning of the nictitating membrane response in decorticate rabbits. Behav Brain Res 11:250–252

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Anthony Dickenson (University of Cambridge), Robert Doty (University of Rochester), Bryan Smotherman (Texas A&M University), Christopher Yeo (University College London), for their careful reading of earlier versions of the manuscript as well as for their thoughtful advice and criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Steele-Russell.

Additional information

This research was supported by S&W research grants ID# 1810 to ISR and ID# 7985 to JAC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele-Russell, I., Russell, M.I., Castiglioni, J.A. et al. The role of sensory pathways in Pavlovian conditioning in rabbit. Exp Brain Res 185, 199–213 (2008). https://doi.org/10.1007/s00221-007-1144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1144-4

Keywords

Navigation