Skip to main content
Log in

Topographical relationships between the anatomy and physiology of the rabbit visual system

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abeles, M. & Goldstein, M. H. Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J. Neurophysiol. 33, 172–187 (1970).

    Google Scholar 

  • Abercrombie, M. Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247 (1946).

    Google Scholar 

  • Adams, A. D. & Forrester, J. M. The projection of the rat's visual field on the cerebral cortex. Q. Jl exp. Physiol. 53, 327–336 (1968).

    Google Scholar 

  • Apter, J. T. Projection of the retina on superior colliculus of cats. J. Neurophysiol. 8, 123–134 (1945).

    Google Scholar 

  • — Eye movements following strychninization of the superior colliculus of cats. J. Neurophysiol. 9, 73–86 (1946).

    Google Scholar 

  • Arden, G. B. Complex receptive fields and responses to moving objects in cells of the rabbit's lateral geniculate body. J. Physiol. 166, 468–488 (1963).

    Google Scholar 

  • Ikeda, H. & Hill, R. M. Rabbit visual cortex: reaction of cells to movement and contrast. Nature 214, 909–911 (1967).

    Google Scholar 

  • Barlow, H. B. Summation and inhibition in the frog's retina. J. Physiol. 119, 69–98 (1953).

    Google Scholar 

  • — Three points about lateral inhibition. In ‘Sensory Communication’. Ed. Rosenblith, W. A., New York. London: M.I.T. & Wiley. 782–790 (1961).

    Google Scholar 

  • Hill, R. M. & Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173, 377–407 (1964).

    Google Scholar 

  • — — The mechanisms of directionally selective units in rabbit's retina. J. Physiol. 178, 477–504 (1965).

    Google Scholar 

  • — & Oyster, C. W. Direction-selective units in rabbit retina: distribution of preferred direction. Science N.Y. 155, 841–842 (1967).

    Google Scholar 

  • Barris, R. W., W. R.Ingram & S. W.Ransom. Optic connections of the diencephalon and midbrain of the cat. J. comp. Neurol. 62, 117–153 (1935).

    Google Scholar 

  • Bartels, M. Vergleichendes über Augenbewegungen. In: Handbuch der normalen und pathologischen Physiologie, Bd. 12 (2), pp. 1113–1165. Berlin: Springer (1931).

    Google Scholar 

  • Baumgartner, G., J. L.Brown & A.Schulz. Response of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 28, 1 (1965).

    Google Scholar 

  • Bishop, P. O., W.Kozak & G. J.Vakkur. Some quantitative aspects of the cat's eye: axis and plane of reference visual field co-ordinates and optics. J. Physiol. 163, 466–502 (1962).

    Google Scholar 

  • Blakemore, C. The representation of three-dimensional visual space in the cat's striate cortex. J. Physiol. 209, 155–179 (1970).

    Google Scholar 

  • — & F. W.Campbell. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 203, 237 (1969).

    Google Scholar 

  • Blinkov, S. M. & I. I.Glezer. ‘The Human Brain in Figures and Tables’, New York: Plenum Press (1968).

    Google Scholar 

  • Braak, J. W. G.. Untersuchungen über optokinetischen Nystagmus. Archs néerl. Physiol. 21, 309–376 (1936).

    Google Scholar 

  • Braak, J. W. G. Ter, Optokinetic control of eye movements, in particular optokinetic nystagmus. Proc. XXII Int. Congr. Physiol. 502–505 (1962).

  • Brecher, G. A. Optisch ausgelöste Augen- und Körperreflexe am Kaninchen. Z. vergl. Physiol. 23, 374–390 (1936).

    Google Scholar 

  • Brown, J. E. Dendritic fields of retinal ganglion cells of the rat. J. Neurophysiol. 28, 1091–1100 (1965).

    Google Scholar 

  • — & J. A.Rojas. Rat retinal ganglion cells; receptive field organization and maintained activity. J. Neurophysiol. 28, 1073–1090 (1965).

    Google Scholar 

  • Brown, T. G. Reflex orientation of the optical axes and the influence upon it of the cerebral cortex. Archs neerl. Physiol. 7, 571–578 (1922).

    Google Scholar 

  • Burns, B. D. ‘The uncertain nervous system’. London: E. Arnold (1968).

    Google Scholar 

  • Butenandt, E. & O. - J.Grüsser. The effect of stimulus area on the response of movement detecting neurons in the frog's retina. Pflugers Arch. 198, 283–293 (1968).

    Google Scholar 

  • Cajal, S.RamonY. ‘Histologie du système nerveux de l'homme et des vertebres’. Paris: Malaine (1911).

    Google Scholar 

  • Campbell, F. W., B. G.Cleland, G. F.Cooper, & C.Enroth-Cugell. The angular selectivity of visual cortical cells to moving gratings. J. Physiol. 198, 237 (1968).

    Google Scholar 

  • G. F.Cooper, & C.Enroth-Cugell. The spatial selectivity of the visual cells of the cat. J. Physiol. 203, 223–236 (1969).

    Google Scholar 

  • Campbell, F. W., G. F. Cooper J. G. Robson, & M. B. Sachs. The spatial selectivity of visual cells of the cat and the squirrel monkey. J. Physiol. 204, 120-121P (1969).

    Google Scholar 

  • Cate, J.Ten. Weitere Beobachtungen an Kaninchen nach beiderseitiger Exstirpationen der Area Striata. Archs. néerl. Physiol. 20, 467–476 (1935).

    Google Scholar 

  • — & A. W. H.VanHerk. Beobachtungen an Kaninchen nach Exstirpationen im Neopallium. Archs néerl. Physiol. 18, 337–385 (1933).

    Google Scholar 

  • Chievitz, J. H. Über das Vorkommen der Area centralis retinae in den vier höheren Wirbelthierklassen. Arch. Anat. Physiol. Lpz. Anat. Abs. Suppl. 139, 311–334 (1891).

    Google Scholar 

  • Chou, J. C. (1954). In: Prince, J. H. (1964).

  • Choudhury, B. P. & D. Whitteridge, Subcortical and cortical projection of the rabbit's visual field. J. Physiol. 176, 14P (1965).

  • — & — Visual field projection on the dorsal nucleus of the lateral geniculate body in the rabbit. Q. Jl exp. Physiol. 50, 104–112 (1965).

    Google Scholar 

  • Christensen, J. L., & R. M.Hill. Receptive fields of single cells of a marsupial visual cortex of Didelphis virginiana. Experientia 26, 43 (1970).

    Google Scholar 

  • Collewijn, H. Optokinetic eye movements in the rabbit: input-output relations. Vision Res. 9, 117–132 (1969).

    Google Scholar 

  • — The normal range of horizontal eye movements in the rabbit. Expl Neurol. 28, 132–143 (1970).

    Google Scholar 

  • Colonnier, M. L. The structural design of the neocortex. In: ‘Brain and Conscious Experience’ ed. Eccles, J. C., New York; Springer Verlag. 1–23 (1966).

    Google Scholar 

  • Cragg, B. G. The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654 (1967).

    Google Scholar 

  • Creutzfeldt, O. & M.Ito. Functional synaptic organization of primary visual cortex neurones in the cat. Exp. Brain Res. 6, 324–352 (1968).

    Google Scholar 

  • — & B.Sakmann. Neurophysiology of vision. A. Rev. Physiol. 31, 499–544 (1969).

    Google Scholar 

  • Crosby, E. C. & J. W.Henderson. The Mammalian midbrain and Isthmus Regions. Part II. Fiber connections of the s.c. B. Pathways concerned in automatic eye movements. J. comp. Neurol. 88, 53–91 (1948).

    Google Scholar 

  • Daniel, P. M. & D.Whitteridge. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961).

    Google Scholar 

  • Davis, F. A. The anatomy and histology of the eye and orbit of the rabbit. Trans. Am. ophthal. Soc. 27, 401–441 (1929).

    Google Scholar 

  • Denney, D., G.Baumgartner & C.Adarjani. Responses of cortical neurones to stimulation of the visual afferent radiations. Exp. Brain Res. 6, 265 (1968).

    Google Scholar 

  • Denny-Brown, D. The midbrain and motor integration. Proc. R. Soc. Med. 55, 527–538 (1962).

    Google Scholar 

  • Diamond, I. T. & W. C.Hall. Evolution of neocortex. Science (N.Y.) 164, 251–262 (1969).

    Google Scholar 

  • Dodt, E. & V.Elenius. Change of threshold during dark adaptation measured with orange and blue light in cats and rabbits. Experientia 16, 313–314 (1960).

    Google Scholar 

  • Dowling, J. E. Organization of the primate retina: electron microscopy. Proc. R. Soc. B. 166, 80–111 (1966).

    Google Scholar 

  • Elenius, V. Recovery in the dark of the rabbit's electroretinogram (in relation to intensity, duration and colour of light-adaptation). Acta physiol. scand. 44, Suppl. 150 (1958).

  • Fishman, M. W. & J. H.Meikle. Visual intensity discrimination in cats after serial tectal and cortical lesions. J. comp. physiol. Psychol. 59, 193–201 (1965).

    Google Scholar 

  • Fleisch, A. Tonische Labyrinthreflexe auf die Augenstellung. Pflugers Arch. 194, 554–573 (1922).

    Google Scholar 

  • Fuchs, A. F. Periodic eye tracking in the monkey. J. Physiol. 193, 161–171 (1967).

    Google Scholar 

  • Garey, L. J., E. G.Jones & T. P. S.Powell. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. neurobiol., neurosurg. Psychiat. 31, 135–157 (1968).

    Google Scholar 

  • Giolli, R. A. & M. D.Guthrie. Organization of projections of visual areas I and II upon the superior colliculus and pretectal nuclei in the rabbit. Brain Res. 6, 388–390 (1967).

    Google Scholar 

  • — & — The primary optic projections in the rabbit. An experimental degeneration study. J. comp. Neurol. 136, 99–126 (1969).

    Google Scholar 

  • Glickstein, M., J.Miller & R.King. Distribution of fibers from the lateral geniculate body to the cerebral cortex. Anat. Rec. 151, 353 (1965).

    Google Scholar 

  • Globus, A. & A. B.Scheibel. Synaptic loci on visual cortical neurons of the rabbit; the specific afferent radiation. Expl Neurol. 18, 116 (1967).

    Google Scholar 

  • Granit, R. ‘Sensory mechanisms of the retina’. London: Oxford University Press (1947).

    Google Scholar 

  • Gross, C. G., D. B.Bender & C. E.Rocha-Miranda. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166, 1303–1305 (1969).

    Google Scholar 

  • Grüsser, O.-J. & U.Grüsser-Cornehls. Neurophysiologisch Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z. vergl. Physiol. 59, 1–24 (1968).

    Google Scholar 

  • D.Finkelstein & U.Grüsser-Cornehls. The effect of stimulus velocity on the response of movement sensitive neurons of the frog's retina. Pflügers Arch. 300, 49–66 (1968).

    Google Scholar 

  • U.Grüsser-Cornehls & T. H.Bullock. Functional organization of receptive fields of movement detecting neurons in the frog's retina. Pflügers Arch. 279, 88–93 1964).

    Google Scholar 

  • Hall, W. C. & I. T.Diamond. Organization of the visual cortex in the hedgehog: I. Cortical cytoarchitecture and thalamic retrograde degeneration. Brain Behav. Evol. 1, 181–214 (1968).

    Google Scholar 

  • Hamdi, F. A. & D. Whitteridge. The representation of the retina on the optic lobe of the pigeon and the superior colliculus of the rabbit and goat. J. Physiol. 121, 44P (1953).

  • Hayashi, Y., I.Sumttomo & K.Iwama. Activation of lateral geniculate neurons by electrical stimulation of superior colliculus in cats. Jap. J. Physiol. 17, 638–652 (1967).

    Google Scholar 

  • Hermann, G. Beiträge zur Physiologie des Rattenauges. Z. Tierpsychol. 15, 462–518 (1958).

    Google Scholar 

  • Hess, W. R., S.Burgi & V.Bucher. Motorische Funktion des Tektal- und Tegmental Gebietes. Mschr. psychiat. Neurol. 112, 1–52 (1946).

    Google Scholar 

  • Hill, R. M. Unit responses of the rabbit lateral geniculate nucleus to monochromatic light on the retina. Science 135, 98–99 (1962).

    Google Scholar 

  • — Receptive field properties of the superior colliculus of the rabbit. Nature 211, 1407–1409 (1966).

    Google Scholar 

  • Hoeve, J.Van Der & A.DeKleun. Tonische Labyrinthreflexe auf die Augen. Pflügers Arch. 169, 241–262 (1917).

    Google Scholar 

  • Hof, M. W.Van. Visual acuity in the rabbit. Vision Res. 7, 749–751 (1967).

    Google Scholar 

  • Holmes, G. The cerebral integration of the ocular movements. Br. Med. J. 107–112 (1938).

  • Horn, G. & R. M.Hill. Responsiveness to sensory stimulation of units in the superior colliculus and subjacent tectotegmental regions of the rabbit. Expl. Neurol. 14, 199–223 (1966).

    Google Scholar 

  • Hubel, D. H. & T. N.Wiesel. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148, 574–591 (1959).

    Google Scholar 

  • — & — Receptive fields of optic nerve fibers in the spider monkey. J. Physiol. 154, 572–580 (1960).

    Google Scholar 

  • — & — Integrative action in the cat's lateral geniculate body. J. Physiol. 155, 385–398 (1961).

    Google Scholar 

  • — & — Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962).

    Google Scholar 

  • — & — Shape and arrangement of columns in cat's striate cortex. J. Physiol. 165, 559 (1963).

    Google Scholar 

  • — & — Receptive fields and functional architecture in two nonstriate visual areas (18 + 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    Google Scholar 

  • — & — Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–244 (1968).

    Google Scholar 

  • — & — Anatomical demonstration of columns in the monkey striate cortex. Nature 221, 747–750 (1969a).

    Google Scholar 

  • — & — Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. J. Physiol. 202, 251–260 (1969b).

    Google Scholar 

  • Hughes, A. Projections of a class of retino-collicular units in the rabbit. J. Physiol. 196 66P (1968a).

  • Hughes, A. Single units of the rabbit visual cortex. J. Physiol. 198, 120P (1968b).

  • Humphrey, N. K. & L.Weiskrantz. Vision in monkeys after removal of the striate cortex. Nature 215, 595–596 (1967).

    Google Scholar 

  • — Responses to visual stimuli of units in the superior colliculus of rats and monkeys. Expl. Neurol. 20, 312–340 (1968).

    Google Scholar 

  • Ingle, D. Visual release of prey-catching behavior in frogs and toads. Brain Behav. Evol. 1, 500–518 (1968).

    Google Scholar 

  • Jacobson, M. The representation of the retina on the optic tectum of the frog. Q. Jl exp. Physiol. 47, 170 (1962).

    Google Scholar 

  • Joshua, D. E. & P. O.Bishop. Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Expl. Brain Res. 10, 389–417 (1970).

    Google Scholar 

  • Keating, M. J. & R. M.Gaze. Observations on the ‘surround’ properties of the receptive fields of frog retinal ganglion cells. Q. Jl exp. Physiol. 55, 129–143 (1970).

    Google Scholar 

  • Kerr, D. I. B. & K. N. Seneviratne. The projection of the visual field on the superior colliculus of the rabbit. J. Physiol. 168, 43P (1963).

  • Kleijn, A.De. Tonische Labyrinth- und Halsreflexe auf die Augen. Pflügen Arch. 186, 82–97 (1921).

    Google Scholar 

  • — Recherches quantitatives sur les positions compensatoires de l'oeil chez le lapin. Archs néerl. Physiol. 7, 138–141 (1922).

    Google Scholar 

  • Kozak, W., R. W.Rodieck & P. O.Bishop. Responses of single units in lateral geniculate nucleus of cat to moving visual patterns. J. Neurophysiol. 28, 19 (1965).

    Google Scholar 

  • Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–67 (1953).

    Google Scholar 

  • Lashley, K. S. Persistent problems in the evolution of mind. Q. Rev. Biol. 24, 28–42 (1949).

    Google Scholar 

  • Lederman, R. J. & W. K.Noell. Fast-fiber system of rabbit optic nerve. Vision Res. 8, 1385–1398 (1968).

    Google Scholar 

  • Leicester, J. & J.Stone. Ganglion, amacrine and horizontal cells of the cat's retina. Vision Res. 7, 695–705 (1967).

    Google Scholar 

  • Lettvin, J. Y., H. R.Maturana, W. S.Mcculloch & W. H.Pitts. What the frog's eye tells the frog's brain. Proc. Inst. Radio Engrs. 47, 1940 (1959).

    Google Scholar 

  • Levick, W. R. Receptive fields of rabbit retinal ganglion cells. Am. J. Optometry 42, 337–343 (1965).

    Google Scholar 

  • — Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina. J. Physiol. 188, 285–307 (1967).

    Google Scholar 

  • C. W.Oyster & E.Takahashi. Rabbit lateral geniculate nucleus: sharpener of directional information. Science 165, 712–713 (1969).

    Google Scholar 

  • Lomo, T. & A.Mollica. Activity of single units in the primary optic cortex in the unanaesthetized rabbit during visual acoustic, olfactory and painful stimulation. Archs ital. Biol. 100, 86 (1962).

    Google Scholar 

  • Lund, R. D. The occipitotectal pathway of the rat. J. Anat. 100, 51–62 (1966).

    Google Scholar 

  • — Synaptic patterns of the superficial layers of the superior colliculus of the rat. J. comp. Neurol. 135, 179–205 (1968).

    Google Scholar 

  • Magnus, R. ‘Körperstellung’. Berlin: Springer (1924).

    Google Scholar 

  • Marchiafava, P. L. & G.Pepeu. The responses of units in the superior colliculus of the cat to a moving visual stimulus. Experientia 22, 51–55 (1966).

    Google Scholar 

  • Maturana, H. R. Functional organization of the pigeon retina. Proc. IUPS 22nd Int. Cong. (Leiden) 3, 170–178 Amsterdam: Excerpta Medica (1964).

    Google Scholar 

  • J. Y.Lettvin, W. S.Mcculloch, W. H.Pitts. Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, Suppl. 129–175 (1960).

    Google Scholar 

  • Mcilwain, J. T. Receptive fields of optic tract axons and lateral geniculate cells, peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964).

    Google Scholar 

  • — & P.Buser. Receptive fields of single cells in the cat's superior colliculus. Expl. Brain Res. 5, 314–325 (1968).

    Google Scholar 

  • Mckenna, M. G. The origin and early differentiation of therian mammals. Ann. N. Y. Acad. Si. 167, 217–240 (1969).

    Google Scholar 

  • Michael, C. R. Integration of information in the superior colliculus. J. gen. Physiol. 50, 2485–2486 (1967).

    Google Scholar 

  • — Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. I: Contrast-sensitive units. J. Neurophysiol. 31, 249–256 (1968a).

    Google Scholar 

  • — Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. II: Directionally selective units. J. Neurophysiol. 31, 257–267 (1968b).

    Google Scholar 

  • — Receptive fields of single optic nerve fibers in a mammal with an all-coneretina. III: opponent color units. J. Neurophysiol. 31, 268–282 (1968c).

    Google Scholar 

  • Montero, V. M., J. F.Brugge & R. E.Beitel. Relation of the visual field to the lateral geniculate body of the Albino rat. J. Neurophysiol. 31, 221–236 (1968).

    Google Scholar 

  • Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408 (1957).

    Google Scholar 

  • Nuboer. J. F. W. Colour vision in a rabbit. Acta physiol. pharmac. néerl. 13. 484–486 (1965).

    Google Scholar 

  • Ogawa, T., K.Karita & I.Tsuchiya. Response characteristics of single neurons in the rabbit visual cortex. Tohoku J. exp. Med. 96, 349–364 (1968).

    Google Scholar 

  • Ordy, J. M. & T.Samorajsky. Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates. Vision Res. 8, 1205–1226 (1968).

    Google Scholar 

  • Oyster, C. W. The analysis of image motion by the rabbit retina. J. Physiol. 199, 613–635 (1968).

    Google Scholar 

  • Partridge, L. D. & J. E.Brown. Receptive fields of rat retinal ganglion cells. Vision Res. 10, 455–461 (1970).

    Google Scholar 

  • Pettigrew, J. D., T. Nikara & P. O. Bishop. Responses to moving slits by single units in cat striate cortex. Exp. Brain Res. 373–390 (1968).

  • Pisa, A. Über den binokularen Gesichtsraum bei Haustieren. Albrecht v. Graefes Arch. Ophthal. 140, 1–54 (1939).

    Google Scholar 

  • Powell, T. P. S. & V. B.Mountcastle. Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture. Johns Hopkins Hosp. Bull. 105, 133–162 (1959).

    Google Scholar 

  • Prince, J. H. ‘The rabbit in eye research’. Ed. Prince, J. H., Springfield: Thomas (1964).

    Google Scholar 

  • Rademaker, G. G. J. & J. W. G.TerBraak. On the central mechanism of some optic reactions. Brain 71, 48–76 (1948).

    Google Scholar 

  • Robinson, D. A. The oculomotor system: a review. Proc. Inst. Elec. Electron. Engrs. 56, 1032–1049 (1968).

    Google Scholar 

  • — & A. F.Fuchs. Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32, 637–648 (1969).

    Google Scholar 

  • Rodieck, R. W. & J.Stone. Response of cat retinal ganglion cells to moving visual patterns. J. Neurophysiol. 28, 819–849 (1965).

    Google Scholar 

  • Rolls, E. T. & A.Cowey. Topography of the retina and striate cortex and its relationship to visual acuity in Rhesus monkeys and Squirrel monkeys. Exp. Brain Res. 10, 298–310 (1970).

    Google Scholar 

  • Rose, J. E. & L. I.Malis. Cytoarchitectonic structure of the striate region and of the dorsal lateral geniculate body; organization of the geniculostriate projections. J. comp. Neurol. 125, 121–140 (1965).

    Google Scholar 

  • Rothfeld, J. Die Physiologie des Bogengangapparatus. Verh. Ges. deutsch Naturforsch. v. Aerzte, 85 Versammlung zu Wien 1913; p. 269–322 (1913).

  • Schaefer, K. P. Mikrobleitungen im Tectum opticum des frei beweglichen Kaninchens. Arch. Psychiat. Nervenkr. 208, 120–146 (1966).

    Google Scholar 

  • — & H.Schneider. Reizversuche im Tectum opticum des Kaninchens. Arch. Psychiat. Nervenkr. 211, 118–137 (1968).

    Google Scholar 

  • Schiffman, H. R. Evidence for sensory dominance; reactions to apparent depth in rabbits, cats and rodents. J. comp. physiol. Psychol. 71, 38–41 (1970).

    Google Scholar 

  • Schneider, O. E. Contrasting visuomotor functions of tectum and cortex in the golden hamster. Psychol. Forsch. 31, 52–62 (1967).

    Google Scholar 

  • Seneviratne, K. N. Ph. D. Thesis, Edinburgh. The respresentation on the subcortical centers of cat and rabbit (1963).

  • Sholl, D. A. ‘Organization of the Cerebral Cortex’. London: Methuen (1956).

    Google Scholar 

  • Siminoff, R., H. O.Schwassman & L.Kruger. Unit analysis of the pretectal nucleus group in the rat. J. comp. Neurol. 130, 329–342 (1967).

    Google Scholar 

  • Smith, K. U. Visual discrimination in the cat: The relation between pattern vision and visual acuity and the optic projection centers of the nervous system. J. Genet. Psychol. 53, 251–272 (1938).

    Google Scholar 

  • Snyder, M. & I. T.Diamond. The organization and function of the visual cortex in the tree shrew. Brain Behav. Evol. 1, 244–288 (1968).

    Google Scholar 

  • Solnitzky, O. & P. J.Harman. The regio occipitalis of the lorisiform lemuroid Galago demidovii. J. comp. Neurol. 84, 339–383 (1946).

    Google Scholar 

  • Spinelli, D. N. Visual receptive fields in the cat's retina: complications. Science152, 1768–1769 (1966).

    Google Scholar 

  • — & M.Weingarten. Afferent and efferent activity in single units of the cat's optic nerve. Expl Neurol. 15, 347–362 (1966).

    Google Scholar 

  • — Receptive field organization of ganglion cells in the cat's retina. Expl Neurol. 19, 291–315 (1967).

    Google Scholar 

  • — & T. W.Barrett. Visual receptive field organization of single units in the cat's visual cortex. Expl Neurol. 24, 76–98 (1969).

    Google Scholar 

  • Sprague, J. M. & T. H.Meikle. The role of the superior colliculus in visually guided behavior. Expl. Neurol. 11, 115–146 (1965).

    Google Scholar 

  • — Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153, 1544–1547 (1966).

    Google Scholar 

  • P. L.Marchiafava & G.Rizzolatti. Unit responses to visual stimuli in the superior colliculus of the unanesthetized mid-pontine cat. Archs ital. Biol. 106, 169–193 (1968).

    Google Scholar 

  • Sterling, P. & B. G.Wickelgren. Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32, 1-15 (1969).

    Google Scholar 

  • Stone, J. & G.Leary. Changes in refraction during growth: the significance of changes in corneal power as observed in the rabbit. Br. J. physiol. Optics 11, 90–94 (1954).

    Google Scholar 

  • Stone, J. A quantitative analysis of the distribution of ganglion cells in the cat's retina. J. comp. Neurol. 124, 337–352 (1965).

    Google Scholar 

  • — & M.Fabian. Specialized receptive fields of the cat's retina. Science 152, 1277–1279 (1966).

    Google Scholar 

  • Sutherland, N. S. Outlines of a theory of visual pattern recognition in animals and man. Proc. R. Soc. B. 171, 297–317 (1968).

    Google Scholar 

  • Takahashi, E., W. R. Levick & C. W. Oyster. Receptive fields of rabbit lateral geniculate neurones. Aust. J. exp. biol. med. Sci. 47, 26P (1969).

  • Thompson, J. M., C. N.Woolsey & S. A.Talbot. Visual areas I + II of cerebral cortex of rabbit. J. Neurophysiol. 13, 277–287 (1950).

    Google Scholar 

  • — The localization of function in the rabbit retina. J. Physiol. 119, 191–209 (1953).

    Google Scholar 

  • Urbantschitsch, E. Kopfnystagmus. Mschr. Ohrenheilk. 44, 1–14 (1910).

    Google Scholar 

  • Valen, L.Von. A possible origin for rabbits. Evolution 18, 484–491 (1964).

    Google Scholar 

  • Vatter, O., Th.Koller & M.Monnier. Die Spektralsensitivität der Retina und des optischen Cortex beim Kaninchen (Einfluss der Farben auf die Antwortkomponenten). Vision Res. 4, 329 (1964).

    Google Scholar 

  • Vejbaesya, C. Doctoral Thesis, Edinburgh. Studies on the connections of the visual system (1967)

  • Velyka, R. R. Fed. Proc. Trans. Supp. 24, No. 4, T 650 (1965).

    Google Scholar 

  • Walk, R. D. The study of visual depth and distance perception in animals. In: Advances in the study of behavior, eds: D. S. Lehrman, R. A. Hinde, E. Shaw. New York: Academic Press (1966).

    Google Scholar 

  • Wcalls, G. L. ‘The vertebrate eye’. Cranbook Institute of Science (1942).

  • — The evolutionary history of eye movements. Vision Res. 2, 69–80 (1962).

    Google Scholar 

  • Washburn, M. F. & E.Abbott. Experiments on the brightness value of red for the light adapted eye of the rabbit. J. anim. Behav. 2, 145–180 (1912).

    Google Scholar 

  • Welt, C., J. C.Aschoff. K.Komeda & V. B.Brooks. ‘Neurophysiological basis of normal and abnormal motor activities’ ed. Yahr, M. D. and Purpura, D. P., Hewlett, N.Y. Raven Press (1967).

    Google Scholar 

  • Wessely, K. Über den Einfluss der Augenbewegungen auf den Augendruck. Arch. f. Augenheilk. 81, 102–119 (1916).

    Google Scholar 

  • Whitteridge, D. Central control of eye movements. In: ‘Handbook of Physiology’ section I, vol. II. Ed.: Field, F., Magoun, H. W. and Hall, V. E. Washington D.C., Amer. physiol. Soc. 1089–1109 (1960).

    Google Scholar 

  • — Geometrical relations between the retina and the visual cortex. In: ‘Mathematics and Computer Science in Biology and Medicine’, pp. 269–276. London: Medical Research Council (1965).

    Google Scholar 

  • Wickelgren, B. G. & P.Sterling. Influence of visual cortex on receptive fields in the superior colliculus of the cat. J. Neurophysiol. 32, 16–23 (1969).

    Google Scholar 

  • Wilson, M. E. & B. G.Cragg. Projections from the lateral geniculate nucleus in the cat and monkey. J. Anat. 161, 677–692 (1967).

    Google Scholar 

  • Woolsey, C. N., W. H.Marshall & P.Bard. Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials. Johns Hopkins Hosp. Bull. 70, 399–441 (1942).

    Google Scholar 

  • — Organization of somatic sensory and motor areas of the cerebral cortex. In: ‘Biological and biochemical basis of behavior’ (Ed. Harlow, H. F. & Woolsey, C. N.) Madison, (Wisc.): University of Wisconsin Press (1958).

    Google Scholar 

Download references

Authors

Additional information

Oxford

University Laboratory of Physiology, Parks Road, Oxford, England.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A. Topographical relationships between the anatomy and physiology of the rabbit visual system. Doc Ophthalmol 30, 33–159 (1971). https://doi.org/10.1007/BF00142518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00142518

Keywords

Navigation