Skip to main content
Log in

Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We evaluated the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) on motor performance and motor learning of a rapid index finger movement. Two groups of healthy right-handed subjects underwent either “real” rTMS (1800 stimuli over the first dorsal interosseous (FDI) muscle hot spot given at 5 Hz and intensity of 90% of resting motor threshold—RMT) or “sham” stimulation. Both groups performed 60 rapid abductions of the right index finger before and after rTMS. The kinematic variables measured were amplitude, duration, peak velocity and peak acceleration. We also evaluated RMT and motor-evoked potential (MEP) amplitude before, 5 and 30 min after rTMS. In both groups practice significantly increased peak velocity, peak acceleration and amplitude and decreased movement duration independently from the type of intervention (“real” and “sham”). “Real” rTMS significantly increased cortical excitability as measured by MEP amplitude whereas “sham” rTMS did not. In our study, 5 Hz rTMS failed to improve either the motor performance or the motor learning of a rapid index-finger abduction despite the increase in cortical excitability of the primary motor cortex. Since motor behaviour engages a distributed cortical and subcortical neuronal network, excitatory conditioning of the primary motor cortex is probably not sufficient to influence the behavioural output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baraduc P, Lang N, Rothwell J, Wolpert DM (2004) Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr Biol 14:252–256

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  • Castro-Alamancos MA, Connors BW (1996) Short-term synaptic enhancement and long-term potentiation in neocortex. Proc Natl Acad Sci USA 93:1335–1339

    Article  PubMed  CAS  Google Scholar 

  • Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121:253–264

    Article  PubMed  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Corcos DM, Jaric S, Agarwal GC, Gottlieb GL (1993) Principles for learning single-joint movements. I. Enhanced performance by practice. Exp Brian Res 94:499–513

    CAS  Google Scholar 

  • Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81:3065–3077

    PubMed  CAS  Google Scholar 

  • Flament D, Shapiro MB, Kempf T, Corcos DM (1999) Time course and temporal order of changes in movement kinematics during learning of fast and accurate elbow flexions. Exp Brain Res 129:441–450

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb GL, Corcos DM, Jaric S, Agarwal GC (1988) Practice improves even the simplest movements. Exp Brain Res 73:436–440

    Article  PubMed  CAS  Google Scholar 

  • Huang YZ, Edwards MJ, Rouins E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  PubMed  CAS  Google Scholar 

  • Jäncke L, Steinmetz H, Benilow S, Ziemann U (2004) Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex. Exp Brain Res 155:196–203

    Article  PubMed  Google Scholar 

  • Jenkins IH, Passingham RE, Brooks DJ (1997) The effect of movement frequency on cerebral activation: a positron emission tomography study. J Neurol Sci 151:195–205

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377:155–158

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Park JW, Ko MH, Jang SH, Lee PKW (2004) Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci Lett 367:181–185

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, You SH, Ko MH, Park JW, Lee KH, Jang SH, Yoo WK, Hallett M (2006) Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 37:1471–1476

    Article  PubMed  Google Scholar 

  • Lefaucher JP, Drouot X, Von Raison F, Mefaucher I, Cesaro P, Nguyen JP (2004) Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 115:2530–2541

    Article  Google Scholar 

  • Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M (2006) Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord 21:325–331

    Article  PubMed  Google Scholar 

  • Mima T, Sadato N, Yazawa S, Hanakawa T, Fukuyama H, Yonekura Y, Shibasaki H (1999) Brain structures related to active and passive finger movements in man. Brain 122:1989–1997

    Article  PubMed  Google Scholar 

  • Modugno N, Nakamura J, MacKinnon CD, Filipovic SR, Bestmann S, Berardelli A, Rothwell JC (2001) Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp Brain Res 140:453–459

    Article  PubMed  CAS  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438

    Article  PubMed  CAS  Google Scholar 

  • Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, Boroojerdi B, Poewe W, Hallett M (2002) Early consolidation in human primary motor cortex. Nature 415:640–644

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Valls-Solé J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M (1994) Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44:892–898

    PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74:1037–1045

    PubMed  CAS  Google Scholar 

  • Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, Conrad B, Siebner HR (2004) Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 115:1519–1526

    Article  PubMed  Google Scholar 

  • Quartarone A, Bagnato S, Rizzo V, Morgante F, Sant’Angelo A, Battaglia F et al (2005) Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex. Exp Brain Res 161:114–124

    Article  PubMed  Google Scholar 

  • Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor corex. J Cereb Blood Flow Metab 16:1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Ramnani N, Passingham RE (2002) Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. J Neurophysiol 88:2035–2046

    PubMed  Google Scholar 

  • Schlaug G, Sanes JN, Thangaraj V, Darby DG, Jancke L, Edelman RR, Warach S (1996) Cerebral activation covaries with movement rate. Neuroreport 7:879–883

    Article  PubMed  CAS  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Siebner HR, Mentschel C, Auer C, Conrad B (1999) Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson’s disease. Neuroreport 10:589–594

    Article  PubMed  CAS  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Strens LHA, Fogelson N, Shanahan P, Rothwell J, Brown P (2003) The ipsilateral human motor cortex can functionally compensate for acute contralateral motor cortex dysfunction. Curr Biol 13:1201–1205

    Article  PubMed  CAS  Google Scholar 

  • Touge T Gerschlager W, Brown P, Rothwell JC (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112:2138–2145

    Article  Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80:2162–2176

    PubMed  CAS  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128:2250–2259

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Berardelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostino, R., Iezzi, E., Dinapoli, L. et al. Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects. Exp Brain Res 180, 105–111 (2007). https://doi.org/10.1007/s00221-006-0838-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0838-3

Keywords

Navigation