Skip to main content

Advertisement

Log in

Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Neuroimaging studies suggest that the primary hand motor area and the cerebellum play a pivotal role in the control of finger tapping, but their differential contribution in this task is unknown. We used therefore repetitive transcranial magnetic stimulation (rTMS) in its virtual lesion mode (1 Hz, 10 min, 90% of motor threshold) to study the effects of transient disruption of the right lateral cerebellum (CB), the left primary hand motor area (M1), and the right brachial plexus (PL, control site) on various finger tapping tasks (paced finger tapping task: PFT; tapping with maximum speed: TAPMAX, and tapping with convenient speed: TAPCON) in healthy right-handed subjects. RTMS of the left M1 slowed finger tapping speed of the right hand in the TAPMAX task. This effect eliminated the right hand superiority in the TAPMAX task. In addition, rTMS of the left M1 resulted in slower tapping speeds for both hands during TAPCON. There were no other effects of rTMS on tapping speed or tapping variability. Findings indicate that M1 is essential for generating fastest finger movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond MC, Kollias SS (2002) Somatotopy in the ipsilateral primary motor cortex. Neuroreport 13:2065–2070

    Article  PubMed  Google Scholar 

  • Amunts K, Schlaug G, Jäncke L, Steinmetz H, Schleicher A, Zilles K (1997) Hand skills covary with the size of motor cortex: a macrostructural adaptation. Hum Brain Mapp 5:206–215

    Article  Google Scholar 

  • Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38:304–312

    CAS  PubMed  Google Scholar 

  • Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cereb Cortex 4:590–600

    CAS  PubMed  Google Scholar 

  • Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1969) Statistical power analysis for the behavioral sciences. Academic Press, New York

  • Curt A, Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond MC, Kollias SS (2002) Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain 125:2567–2578

    Article  PubMed  Google Scholar 

  • Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158

    Article  CAS  PubMed  Google Scholar 

  • Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455

    CAS  PubMed  Google Scholar 

  • Gerschlager W, Christensen LO, Bestmann S, Rothwell JC (2002) rTMS over the cerebellum can increase corticospinal excitability through a spinal mechanism involving activation of peripheral nerve fibres. Clin Neurophysiol 113:1435–1440

    Article  CAS  PubMed  Google Scholar 

  • Hepp-Reymond MC (1988) Functional organization of motor cortex and its participation in voluntary movements. In: Seklis HD, Erwin J (eds) Comparative primate biology. Liss, New York, pp 501–624

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Humphrey DR (1972) Relating motor cortex spike trains to measures of motor performance. Brain Res 40:7–18

    Article  CAS  PubMed  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180

    PubMed  Google Scholar 

  • Jäncke L, Schlaug G, Steinmetz H (1997) Hand skill asymmetry in professional musicians. Brain Cogn 34:424–432

    Article  PubMed  Google Scholar 

  • Jäncke L, Peters M, Schlaug G, Posse S, Steinmetz H, Muller-Gartner H (1998a) Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Brain Res Cogn Brain Res 6:279–284

    PubMed  Google Scholar 

  • Jäncke L, Specht K, Mirzazade S, Loose R, Himmelbach M, Lutz K, Shah NJ (1998b) A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: a functional magnetic resonance imaging analysis in human subjects. Neurosci Lett 252:37–40

    PubMed  Google Scholar 

  • Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Menon RS, Ogawa S, Ugurbil K (1993a) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69:297–302

    CAS  PubMed  Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993b) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    CAS  PubMed  Google Scholar 

  • Kosslyn SM, Pascual-Leone A, Felician O, Camposano S, Keenan JP, Thompson WL, Ganis G, Sukel KE, Alpert NM (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167–170

    CAS  PubMed  Google Scholar 

  • Lee L, Siebner HR, Rowe JB, Rizzo V, Rothwell JC, Frackowiak RS, Friston KJ (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318

    CAS  PubMed  Google Scholar 

  • Lutz K, Specht K, Shah NJ, Jäncke L (2000) Tapping movements according to regular and irregular visual timing signals investigated with fMRI. Neuroreport 11:1301–1306

    CAS  PubMed  Google Scholar 

  • Lutz K, Weidner R, Shah NJ, Jäncke L (2001) The transfer of a timing pattern to the untrained human hand investigated with functional magnetic resonance imaging. Neurosci Lett 301:45–48

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251:281–298

    CAS  PubMed  Google Scholar 

  • Munchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561

    CAS  PubMed  Google Scholar 

  • Parlow SE, Kinsbourne M (1989) Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain. Brain Cogn 11:98–113

    CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117:847–858

    PubMed  Google Scholar 

  • Peters M (1977) Simultaneous performance of two motor activities: the factor of timing. Neuropsychologia 15:461–465

    Article  CAS  PubMed  Google Scholar 

  • Peters M (1981) Handedness: coordination of within- and between-hand alternating movements. Am J Psychol 94:633–643

    CAS  PubMed  Google Scholar 

  • Peters M (1998) Description and validation of a flexible and broadly usable hand preference questionnaire. Laterality 3:77–96

    Article  Google Scholar 

  • Plewnia C, Lotze M, Gerloff C (2003) Disinhibition of the contralateral motor cortex by low-frequency rTMS. Neuroreport 14:609–612

    Article  PubMed  Google Scholar 

  • Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16:1250–1254

    CAS  PubMed  Google Scholar 

  • Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535

    CAS  PubMed  Google Scholar 

  • Rossi S, Pasqualetti P, Rossini PM, Feige B, Ulivelli M, Glocker FX, Battistini N, Lucking CH, Kristeva-Feige R (2000) Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb Cortex 10:802–808

    CAS  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lucking CH (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    CAS  PubMed  Google Scholar 

  • Schlaghecken F, Munchau A, Bloem BR, Rothwell J, Eimer M (2003) Slow frequency repetitive transcranial magnetic stimulation affects reaction times, but not priming effects, in a masked prime task. Clin Neurophysiol 114:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Sommer M, Kamm T, Tergau F, Ulm G, Paulus W (2002) Repetitive paired-pulse transcranial magnetic stimulation affects corticospinal excitability and finger tapping in Parkinson’s disease. Clin Neurophysiol 113:944–950

    Article  PubMed  Google Scholar 

  • Strens LH, Oliviero A, Bloem BR, Gerschlager W, Rothwell JC, Brown P (2002) The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin Neurophysiol 113:1279–1285

    Article  PubMed  Google Scholar 

  • Taylor HG, Heilman KM (1980) Left-hemisphere motor dominance in righthanders. Cortex 16:587–603

    CAS  PubMed  Google Scholar 

  • Theoret H, Haque J, Pascual-Leone A (2001) Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett 306:29–32

    Article  CAS  PubMed  Google Scholar 

  • Thut G, Cook ND, Regard M, Leenders KL, Halsband U, Landis T (1996) Intermanual transfer of proximal and distal motor engrams in humans. Exp Brain Res 108:321–327

    CAS  PubMed  Google Scholar 

  • Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37:703–713

    CAS  PubMed  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    CAS  PubMed  Google Scholar 

  • Wassermann EM, Grafman J, Berry C, Hollnagel C, Wild K, Clark K, Hallett M (1996) Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr Clin Neurophysiol 101:412–417

    CAS  PubMed  Google Scholar 

  • Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC (1996) Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol 101:58–66

    Article  CAS  PubMed  Google Scholar 

  • Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    CAS  PubMed  Google Scholar 

  • Wittmann M, Von Steinbuchel N, Szelag E (2001) Hemispheric specialisation for self-paced motor sequences. Brain Res Cogn Brain Res 10:341–344

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jäncke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäncke, L., Steinmetz, H., Benilow, S. et al. Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex. Exp Brain Res 155, 196–203 (2004). https://doi.org/10.1007/s00221-003-1719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1719-7

Keywords

Navigation