Skip to main content
Log in

Control of the dominant and nondominant hand: exploitation and taming of nonmuscular forces

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Movements of the dominant and nondominant hand have been claimed to differ with respect to how they take intersegmental dynamics into account. Consistent with this claim, movements of the dominant hand are hypothesized to better exploit the intrinsic limb dynamics, whereas movements of the nondominant hand are controlled to make the intrinsic dynamics ineffective as far as this is possible. For rapid finger oscillations this hypothesis implies a higher level of co-contractions in the nondominant than in the dominant hand. Replicating previous findings on finger tapping, finger oscillations of the dominant hand were faster and less variable than those of the nondominant hand. More importantly, the variance of the relative difference between myoelectric signals of antagonistic muscles and thus the power of reciprocal myoelectric activity was smaller in the nondominant hand, indicating a relatively higher level of co-contractions than in the dominant hand. In addition, a spectral decomposition of the total power of the relative-difference signal revealed stronger relative power in the frequency band of the finger oscillations in the dominant than in the nondominant hand. These findings are consistent with the hypothesis that for the dominant hand more accurate feedforward control is possible based on a more accurate internal model of limb dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerman PL, Cianciolo AT (2000) Cognitive, perceptual-speed, and psychomotor determinants of individual differences during skill acquisition. J Exp Psychol Appl 6:259–290

    Article  PubMed  CAS  Google Scholar 

  • Annett M (2002) Handedness and brain asymmetry. The right shift theory. Psychology Press, Hove

    Google Scholar 

  • Annett J, Annett M, Hudson PTW, Turner A (1979) The control of movement in the preferred and non-preferred hands. Q J Exp Psychol 31:641–652

    Article  PubMed  CAS  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421

    Article  PubMed  Google Scholar 

  • Bagesteiro LB, Sainburg RL (2003) Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol 90:1503–1513

    Article  PubMed  Google Scholar 

  • Baker EL, Letz R, Fidler A (1985) A computer-administered neurobehavioral evaluation system for occupational and environmental epidemiology. J Occup Med 27:206–212

    PubMed  CAS  Google Scholar 

  • Balera F, Borroni P, Cavallari P (2000) Neural compensation for mechanical differences between hand and foot during coupled oscillations of the two segments. Exp Brain Res 133:165–177

    Article  Google Scholar 

  • Binsted G, Cullen J, Elliott D (1998) Manual asymmetries in goal-directed movement: examination of the motor output hypothesis. Brain Cognit 38:102–110

    Article  CAS  Google Scholar 

  • Bishop DVM (1989) Does hand proficiency determine hand preference? Br J Psychol 80:191–199

    PubMed  Google Scholar 

  • Calvin WH (1983) A stone’s throw and its launch window: timing precision and its implications for language and hominid brains. J Theor Biol 104:121–135

    Article  PubMed  CAS  Google Scholar 

  • Carlier M, Dumont AM, Beau J, Michel F (1993) Hand performance of French children on a finger-tapping test in relation to handedness, sex, and age. Percept Mot Skills 76:931–940

    PubMed  CAS  Google Scholar 

  • Carson RG (1989) Manual asymmetries: feedback processing, output variability, and spatial complexity—resolving some inconsistencies. J Mot Behav 21:38–47

    PubMed  CAS  Google Scholar 

  • Carson RG (1993) Manual asymmetries: old problems and new directions. Hum Mov Sci 12:479–506

    Article  Google Scholar 

  • Carson RG, Goodman D, Chua R, Elliott D (1993) Asymmetries in the regulation of visually guided aiming. J Mot Behav 25:21–32

    Article  PubMed  CAS  Google Scholar 

  • Darling WG, Cooke JD, Brown SH (1989) Control of simple arm movements in elderly human. Neurobiol Aging 10:149–157

    Article  PubMed  CAS  Google Scholar 

  • Elliott D, Weeks DJ, Jones T (1986) Lateral asymmetries in finger-tapping by adolescents and young adults with Down syndrome. Am J Ment Defic 90:472–475

    PubMed  CAS  Google Scholar 

  • Fleishman A (1957) A comparative study of aptitude patterns in unskilled and skilled psychomotor performance. J Appl Psychol 41:263–272

    Article  Google Scholar 

  • Fleishman A (1960) Abilities at different stages of practice in rotary pursuit performance. J Exp Psychol 60:162–171

    Article  PubMed  CAS  Google Scholar 

  • Fleishman EA, Hempel WE (1954) Changes in factor structure of a complex psychomotor test as a function of practice. Psychometrika 19:239–252

    Article  Google Scholar 

  • Fleishman EA, Hempel WE (1955) The relation between abilities and improvement with practice in a visual discrimination reaction task. J Exp Psychol 49:301–312

    Article  PubMed  CAS  Google Scholar 

  • Flowers K (1975) Handedness and controlled movement. Br J Psychol 66:39–52

    PubMed  CAS  Google Scholar 

  • Gerdle B, Karlsson S, Day S, Djupsjöbacka M (1999) Acquisition, processing and analysis of the surface electromyogram. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin Heidelberg New York, pp 705–755

    Google Scholar 

  • Hammond G (2002) Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci Biobehav Rev 26:285–292

    Article  PubMed  Google Scholar 

  • Hammond G, Bolton Y, Plant Y, Manning J (1988) Hand asymmetries in interresponse intervals during rapid repetitive finger tapping. J Mot Behav 20:67–71

    PubMed  CAS  Google Scholar 

  • Hatsopoulos NG. (1996) Coupling the neural and physical dynamics in rhythmic movements. Neural Comput 8:567–581

    Article  PubMed  CAS  Google Scholar 

  • Heuer H (1987) Does a hand preference indicate a hemispheric specialization? Behav Brain Sci 10:277–278

    Article  Google Scholar 

  • Heuer H (2002) The effects of weak perturbations on rapid finger oscillations. Hum Mov Sci 21:119–130

    Article  PubMed  Google Scholar 

  • Heuer H (2006) Temporal and spatial characteristics of rapid finger oscillations. Motor Control 10:212–231

    PubMed  Google Scholar 

  • Heuer H, Schulna R (2002) Phasing of muscle activity during rapid finger oscillations. J Mot Behav 34:277–289

    Article  PubMed  Google Scholar 

  • Heuer H, Schulna R, Luttmann A (2002) The effects of muscle fatigue on rapid finger oscillations. Exp Brain Res 147:124–134

    Article  PubMed  Google Scholar 

  • Hogan N (1984) Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans Autom Control 29:681–690

    Article  Google Scholar 

  • Jäncke L, Peters M, Schlaug G, Posse S, Steinmetz H, Müller-Gärtner H-W (1998) Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Cogn Brain Res 6:279–284

    Article  Google Scholar 

  • Jäncke L, Specht K, Mirzazade S, Peters M (1999) The effect of finger-movement speed on the dominant and the subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage 9:497–507

    Article  PubMed  Google Scholar 

  • Jäncke L, Steinmetz H, Benilow S, Ziemann U (2004) Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex. Exp Brain Res 155:196–203

    Article  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Kay BA, Kelso JAS, Saltzman E, Schöner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Hum Percept Perform 13:178–192

    Article  PubMed  CAS  Google Scholar 

  • McManus IC, Kemp RI, Grant J (1986) Differences between fingers and hands in tapping ability: ociation between speed and regularity. Cortex 22:461–473

    PubMed  CAS  Google Scholar 

  • Melsbach G, Wohlschläger A, Spiess M, Güntürkün O (1996) Morphological asymmetries of motoneurons innervating upper extremities: clues to the anatomical foundations of handedness? Int J Neurosci 86:217–224

    PubMed  CAS  Google Scholar 

  • Metz AM (1970) Änderungen der myoelektrischen Aktivität während eines sensomotorischen Lernprozesses. Zeitschrift für Psychologie 178:51–88

    PubMed  CAS  Google Scholar 

  • Milner TE, Cloutier C (1998) Damping of the wrist joint during voluntary movement. Exp Brain Res 122:309–317

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Peters M (1980) Why the preferred hand taps more quickly than the non-preferred hand: three experiments on handedness. Can J Psychol 34:62–71

    Google Scholar 

  • Peters M, Durding B (1979) Left-handers and right-handers compared on a motor task. J Mot Behav 11:103–111

    PubMed  CAS  Google Scholar 

  • Provins KA (1956) “Handedness” and skill. Q J Exp Psychol 8:79–95

    Article  Google Scholar 

  • Provins KA (1958) The effect of training and handedness on the performance of two simple motor tasks. Q J Exp Psychol 10:29–39

    Article  Google Scholar 

  • Rack PMH, Westbury DR (1969) The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol 204:443–460

    PubMed  CAS  Google Scholar 

  • Rosenbaum DA, Slotta JD, Vaughan J, Plamondon R (1991) Optimal movement selection. Psychol Sci 2:86–91

    Article  Google Scholar 

  • Roy EA, Kalbfleisch L, Elliott D (1994) Kinematic analyses of manual asymmetries in visual aiming movements. Brain Cogn 24:289–295

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Schmidt SL, Oliveira RM, Krahe TE, Filgueiras CC (2000) The effects of hand preference and gender on finger tapping performance asymmetry by the use of an infra-red light measurement device. Neuropsychologia 38:529–534

    Article  PubMed  CAS  Google Scholar 

  • Seidler-Dobrin RD, Stelmach GE (1998) Persistence in visual feedback control by the elderly. Exp Brain Res 119:467–474

    Article  PubMed  CAS  Google Scholar 

  • Serrien DJ, Ivry RB, Swinnen SP (2006) Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7:160–167

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama I, Ninchoji T, Uemura K (1990) The finger-tapping test. A quantitative analysis. Arch Neurol 47:681–684

    PubMed  CAS  Google Scholar 

  • Sturm W, Büssing A (1985) Ergänzende Normierungsdaten und Retest-Reliabilitätskoeffizienten zur Motorischen Leistungsserie (MLS) nach Schoppe. Diagnostica 3:234–245

    Google Scholar 

  • Tinker MA, Goodenough FL (1930) A comparative study of finger tapping in children and adults. Child Dev 1:152–159

    Google Scholar 

  • Todor JI, Kyprie PM (1980) Hand differences in the rate and variability of rapid tapping. J Mot Behav 12:57–62

    PubMed  CAS  Google Scholar 

  • Viviani P, Soechting JF, Terzuolo CA (1976) Influence of mechanical properties on the relation between EMG activity and torque. J Physiol (Paris) 72:45–58

    CAS  Google Scholar 

  • Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154

    PubMed  CAS  Google Scholar 

  • Wachholder K (1933) Selbstgewähltes Bewegungstempo und seine Beziehung zum “Eigenrhythmus” und zur Ökonomie der Bewegung. Arbeitsphysiologie 7:423–429

    Google Scholar 

  • Wenderoth N, Bock O (1999) Load dependence of simulated central tremor. Biol Cybern 80:285–290

    Article  PubMed  CAS  Google Scholar 

  • Zipp P (1982) Recommendations for the standardization of lead positions in surface electromyography. Eur J Appl Physiol 50:41–54

    Article  Google Scholar 

Download references

Acknowledgment

The research reported in this paper was supported by grant He 1187/12-1 of the Deutsche Forschungsgemeinschaft. I thank Raphael Schulna, Stefan Hohmann, and Alexander Waschkau for their support in running the experiment, and Alwin Luttmann for stimulating discussions of ways to analyse EMG signals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Heuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuer, H. Control of the dominant and nondominant hand: exploitation and taming of nonmuscular forces. Exp Brain Res 178, 363–373 (2007). https://doi.org/10.1007/s00221-006-0747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0747-5

Keywords

Navigation