Skip to main content
Log in

Nicotine suppresses the P13 auditory evoked potential by acting on the pedunculopontine nucleus in the rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We identified a potential novel site of action for nicotine (NIC) since (a) systemic injection of NIC led to a dose-dependent decrease in the amplitude of the sleep state-dependent, vertex-recorded, P13 midlatency auditory evoked potential (generated by the reticular activating system, RAS), (b) localized injections of a nicotinic receptor antagonist into the pedunculopontine nucleus (PPN, the cholinergic arm of the RAS) blocked the effects of systemic NIC on the P13 potential (a measure of level of arousal), and (c) localized injection of a nicotinic receptor agonist into the PPN also led to a decrease in the amplitude of the P13 potential, an effect blocked by PPN injection of a nicotinic receptor antagonist. There were minor changes in the manifestation of the startle response (SR) at the concentrations used; however, NIC did decrease the hippocampal N40 potential, although its effects were not affected by antagonist or agonist injections into the PPN. These results suggest a potential mechanism underlying the anxiolytic effects of NIC—suppression of the cholinergic arm of the RAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2A–B
Fig. 3A–B
Fig. 4A–D
Fig. 5A–D

Similar content being viewed by others

References

  • Acri JB, Morse DE, Popke EJ, Grunberg NE (1994) Nicotine increases sensory gating measured as inhibition of the acoustic reflex in rats. Psychopharmacology (Berl) 114:369–374

    Google Scholar 

  • Adler LE, Hoffer LJ, Griffith JM, Waldo MC, Freedman T (1992) Normalization of deficient auditory sensory gating in relatives of schizophrenics by nicotine. Biol Psychiatry 32:607–616

    Article  CAS  PubMed  Google Scholar 

  • Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psychiatry 150:1856–1861

    Google Scholar 

  • Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613

    Google Scholar 

  • Braff DL (1993) Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 19:233–259

    CAS  PubMed  Google Scholar 

  • Buchwald JS, Hinman C, Huang RJ, Brown CM, Brown KA (1981) Middle- and long-latency auditory evoked responses recorded from the vertex of normal and chronically lesioned cats. Brain Res 205:91–109

    Google Scholar 

  • Buchwald JS, Rubenstein EH, Schwafel J, Strandburg RJ (1991) Midlatency auditory evoked responses: differential effects of a cholinergic agonist and antagonist. Electroencephalogr Clin Neurophysiol 80:303–309

    Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signaling. Trends Pharmacol Sci 25:317–324

    Google Scholar 

  • Datta S (1995) Neuronal activity in the peribrachial area: relationship to behavioral state control. Neurosci Biobehav Rev 19:67–84

    Google Scholar 

  • Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res 70:611–621

    Google Scholar 

  • Datta S, Patterson EH, Siwek DF (1997) Endogenous and exogenous nitric oxide in the pedunculopontine tegmentum induces sleep. Synapse 27:69–78

    Google Scholar 

  • Erwin RJ, Buchwald JS (1986a) Midlatency auditory evoked responses: differential recovery cycle characteristics. Electroencephalogr Clin Neurophysiol 64:417–423

    Google Scholar 

  • Erwin RJ, Buchwald JS (1986a) Midlatency auditory evoked responses: differential effects of sleep in the human. Electroencephalogr Clin Neurophysiol 65:383–392

    Google Scholar 

  • Fendt M, Koch M (1999) Cholinergic modulation of the acoustic startle response in the caudal pontine reticular nucleus of the rat. Eur J Pharmacol 370:101–107

    Google Scholar 

  • Freedman R, Adler LE, Gerhardt GA, Waldo M, Baker N, Rose GM (1987) Neurobiological studies of sensory gating in schizophrenia. Schizophr Bull 13:669–678

    CAS  PubMed  Google Scholar 

  • Freedman R, Adler LE, Bickford P, Byerly W, Coon H, Cullum M, Griffith JM, Harris JG, Leonard S, Miller C, Myles-Worsley M, Nagamoto HT, Rose G, Waldo M (1994) Schizophrenia and nicotinic receptors. Harv Rev Psychiatry 2:179–192

    Google Scholar 

  • Garcia-Rill E (1997) Disorders of the reticular activating system. Med Hypotheses 49:379–387

    Google Scholar 

  • Garcia-Rill E, Biedermann J, Chambers T, Skinner RD, Mrak RE, Husain M, Karson CN (1995) Mesopontine neurons in schizophrenia. Neurosci 66:321–335

    Google Scholar 

  • Garcia-Rill E, Skinner RD (2002) The sleep-state-dependent P50 midlatency auditory evoked potential. In: Lee-Chiong TL, Sateia MJ, Carskadon MA (eds) Sleep medicine. Hanley & Belfus, Philadelphia, PA, pp 697–704

  • Goff DC, Henderson DC, Amico E (1992) Cigarette smoking in schizophrenia: relationship to psychopathology and medication side effects. Am J Psychol 149:1189–1194

    Google Scholar 

  • Good C, Bay K, Skinner RD, Garcia-Rill E (2004) Novel site of action for nicotine in the pedunculopontine nucleus (PPN). Sleep 27:A18

    Google Scholar 

  • Gopalaswamy AK, Morgan R (1986) Smoking in chronic schizophrenia. Br J Psychiatry 149:523

    Google Scholar 

  • Harrison JB, Woolf NJ, Buchwald JS (1990) Cholinergic neurons of the feline pontomesencephalon. II. Essential role in “Wave A” generation. Brain Res 520:43–54

    Google Scholar 

  • Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46

    Google Scholar 

  • Karson C, Garcia-Rill E, Biedermann J, Mrak RE, Husain M, Skinner RD (1991) The brain stem reticular formation in schizophrenia. Psychiatry Res 40:31–48

    Google Scholar 

  • Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97:71–82

    Article  CAS  PubMed  Google Scholar 

  • Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC, Dani JA, Grady SR, Kellar KJ, Lindstrom JM, Marks MJ, Quik M, Taylor PW, Wonnacott S (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 51:397–401

    CAS  PubMed  Google Scholar 

  • Luntz-Liebman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136

    Google Scholar 

  • Mamiya N, Buchanan R, Skinner RD, Garcia-Rill E (2003) Novel site of action for nicotine: inhibition of cholinergic pedunculopontine (PPN) output. Neurosci Abstr 29:930.5

    Google Scholar 

  • Mamiya N, Buchanan R, Wallace T, Skinner RD, Garcia-Rill E (2004) Novel site of action for nicotine: inhibition of pedunculopontine (PPN) output, blockade by mecamylamine. Sleep 27:A21

    Google Scholar 

  • Manaye KF, Zweig R, Wu D, Hersh LB, De LaCalle S, Saper CB, German DC (1999) Quantification of cholinergic and select non-cholinergic mesopontine neuronal populations in the human brain. Neurosci 89:759–770

    Google Scholar 

  • Miyazato H, Skinner RD, Reese NB, Boop FA, Garcia-Rill E (1995) A middle latency auditory evoked potential in the rat. Brain Res Bull 37:247–255

    Google Scholar 

  • Miyazato H, Skinner RD, Garcia-Rill E (1998) Sensory gating of the P13 midlatency auditory evoked potential and the startle response in the rat. Brain Res 822:60–71

    Google Scholar 

  • Miyazato H, Skinner RD, Garcia-Rill E (1999a) Neurochemical modulation of the P13 midlatency auditory evoked potential in the rat. Neurosci 92:911–920

    Google Scholar 

  • Miyazato H, Skinner RD, Garcia-Rill E (1999b) Sensory gating of the P13 midlatency evoked potential and the startle response in the rat. Brain Res Bull 822:60–71

    Google Scholar 

  • Miyazato H, Skinner RD, Cobb M, Anderson B, Garcia-Rill E (1999c) Midlatency auditory evoked potentials in the rat: effects of interventions that modulate arousal. Brain Res Bull 48:545–553

    Google Scholar 

  • Miyazato H, Skinner RD, Crews T, Williams K, Garcia-Rill E (2000a) Serotonergic modulation of the P13 midlatency auditory evoked potential in the rat. Brain Res Bull 51:387–391

    Google Scholar 

  • Miyazato H, Skinner RD, Garcia-Rill E (2000b) Locus coeruleus involvement in the effects of immobilization stress on the P13 midlatency auditory evoked potential in the rat. Prog Neuropsychopharmacol Biol Psychiatry 24:1177–1201

    Google Scholar 

  • O’Neill HC, Rieger K, Kem WR, Stevens KE (2003) DMXB, an α-7 nicotinic agonist, normalizes auditory gating in isolation-reared rats. Psychopharmacol 169:332–339

    Google Scholar 

  • Papke RL, Sanberg PR, Shytle RD (2001) Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol Exp Ther 297:646–656

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Phelan KD, Gallagher JP (1992) Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro. Synapse 10:349–358

    Google Scholar 

  • Reese NB, Garcia-Rill E, Skinner RD (1995) Auditory input to the pedunculopontine nucleus I. Evoked potentials. Brain Res Bull 37:257–264

    Google Scholar 

  • Steriade M, Amzica F, Contreras D (1996) Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci 16:216–239

    Google Scholar 

  • Stevens KE, Freedman R, Rose GM (1997) Rats reared in social isolation show schizophrenia-like changes in auditory gating. Pharmacol Biochem Behav 58:1031–1036

    Google Scholar 

  • Stevens KE, Kem WR, Mahnir VM, Freedman R (1998) Selective α-7 nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacol 136:320–327

    Google Scholar 

  • Stevens KE, Kem WR, Freedman R (1999) Selective α-7 nicotinic receptor stimulation normalizes chronic cocaine-induced loss of hippocampal sensory inhibition in CH3 mice. Biol Psychiatry 46:1443–1450

    Google Scholar 

  • Szabo I (1965) Analysis of the muscular action potentials accompanying the acoustic startle response. Acta Physiol Hung 27:167–178

    Google Scholar 

  • Tribollet E, Bertrand D, Marguerat A, Raggenbass M (2004) Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in rat brain. Neurosci 124:405–420

    Google Scholar 

  • Vazquez J, Baghdoyan HA (2004) GABAA receptors inhibit acetylcholine release in cat pontine reticular formation. J Neurophysiol 92(4):2198–206

    Google Scholar 

  • Vizi ES, Lendvai B (1999) Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Rev 30:219–235

    Google Scholar 

  • Waldo M, Gehardt G, Bakjer N, Drebing C, Adler L, Freedman R (1992) Auditory sensory gating and catecholamine metabolism in schizophrenic and normal subjects. Psychiatry Res 44:21–32

    Google Scholar 

Download references

Acknowledgments

Supported by USPHS grants NS20246 and RR20146, and the Arkansas Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garcia-Rill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamiya, N., Buchanan, R., Wallace, T. et al. Nicotine suppresses the P13 auditory evoked potential by acting on the pedunculopontine nucleus in the rat. Exp Brain Res 164, 109–119 (2005). https://doi.org/10.1007/s00221-005-2219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-2219-8

Keywords

Navigation