Skip to main content
Log in

Dopamine-dependent modulation of rat globus pallidus excitation by nicotine acetylcholine receptors

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The globus pallidus (GP) coordinates information processing in the basal ganglia nuclei. The contribution of nicotinic cholinergic receptors (nAChRs) to the spiking activity of GP neurons is largely unknown. Several studies have reported that the effect of nAChRs in other nuclei depends on dopaminergic input. Via in vivo single unit extracellular recordings and intranuclear drug infusions, we analyzed the effects of local activation and blockade of nAChRs in neurons of both sham and 6-hydroxydopamine (6-OHDA)-lesioned rats. In sham rats, the local application of nicotine and edrophonium (an acetylcholinesterase inhibitor) increases GP neurons spiking rate. Local application of mecamylamine, a neuronal nicotinic cholinergic antagonist, diminishes pallidal neurons spiking rate, an effect not produced by d-tubocurarine, a peripheral nicotinic cholinergic antagonist. Moreover, mecamylamine blocks the excitatory effect evoked by nicotine and edrophonium. In 6-OHDA-lesioned rats, local infusion of nicotine does not change pallidal neurons firing rate. Our results show that there is a tonic cholinergic input to the GP that increases their spiking rate through the activation of nAChRs and that this effect depends on functional dopaminergic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BS:

Basal ganglia

GP:

Globus pallidus

nAChRs:

Nicotinic cholinergic receptors

6-OHDA:

6-hydroxydopamine

PPn:

Pedunculopontine nucleus

L-DOPA:

Levodopa, L-3,4 dihydroxyphenylalanine

GABA:

Gamma-aminobutyric acid

5-HT1B:

5-Hydroxytryptamine, serotonin, receptor type 1B

L-694,247:

2-[5-[3-(4-Methylsulfonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indol-3-yl]ethanamine

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  • Anderson DJ, Malysz J, Gronlien JH et al (2009) Stimulation of dopamine release by nicotinic acetylcholine receptor ligands in rat brain slices correlates with the profile of high, but not low, sensitivity alpha4beta2 subunit combination. Biochem Pharmacol 78:844–851

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom DA, Bromley SD, Walters JR (1982) Apomorphine increases the activity of rat globus pallidus neurons. Brain Res 238:266–271

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Wonnacott S (1988) [3H](-)nicotine binding sites in fetal human brain. Brain Res 475:1–7

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Shigemoto R, Mercer JN, Surmeier DJ (2004) HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. J Neurosci 24:9921–9932

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Glajch KE, Gertler TS et al (2011) HCN channelopathy in external globus pallidus neurons in models of Parkinson’s disease. Nat Neurosci 14:85–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Rong X, Sun FJ, Xue Y, Hao XM, Liu HX, Wang H, Chen XY, Liu ZR, Deng WS, Huan XH, Xie JX, Yung WH (2015) Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo. Mollecular Cell Neurosci 68:46–55

    Article  CAS  Google Scholar 

  • Cooper AJ, Stanford IM (2001) Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology 41:62–71

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, Radcliffe KA, Pidoplichko VI (2000) Variations in desensitization of nicotinic acetylcholine receptors from hippocampus and midbrain dopamine areas. Eur J Pharmacol 393:31–38

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res 70:611–621

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  CAS  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    PubMed  CAS  Google Scholar 

  • Filion M, Tremblay L, Bedard PJ (1991) Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:152–161

    PubMed  CAS  Google Scholar 

  • Flores C, Rogers S, Pabreza L, Wolf B, Kellar K (1992) Immunoprecipitation and characterization of the high affinity nicotine binding site in the brain. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Florio T, Scarnati E, Confalone G et al (2007) High-frequency stimulation of the subthalamic nucleus modulates the activity of pedunculopontine neurons through direct activation of excitatory fibres as well as through indirect activation of inhibitory pallidal fibres in the rat. Eur J Neurosci 25:1174–1186

    Article  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gillies A, Willshaw D, Li Z (2002) Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc Biol Sci 269:545–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorbachevskaya AI, Chivileva OG (2006) Organization of the efferent projections of the pedunculopontine tegmental nucleus of the midbrain of the dog pallidum. Neurosci Behav Physiol 36:423–428

    Article  PubMed  CAS  Google Scholar 

  • Guan ZZ, Nordberg A, Mousavi M, Rinne JO, Hellstrom-Lindahl E (2002) Selective changes in the levels of nicotinic acetylcholine receptor protein and of corresponding mRNA species in the brains of patients with Parkinson’s disease. Brain Res 956:358–366

    Article  PubMed  CAS  Google Scholar 

  • Hernández V, Hegeman DJ, Cui Q, Kelver DA, Fiske MP, Glajch KE, Pitt JE, Huang TY, Justice NJ, Chan CS (2015) Parvalbumin + neurons and Npas1 + neurons are distinct neuron classes in the mouse external globus pallidus. J Neurosci 35(34):11830–11847

    Article  PubMed  Google Scholar 

  • Hill JA Jr, Zoli M, Bourgeois JP, Changeux JP (1993) Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J Neurosci 13:1551–1568

    PubMed  CAS  Google Scholar 

  • Hill DN, Mehta SB, Kleinfeld D (2011) Quality metrics to accompany spike sorting of extracellular signals. J Neurosci 31:8699–8705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jaeger D, Kita H (2011) Functional connectivity and integrative properties of globus pallidus neurons. Neuroscience 198:44–53

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jennings KA, Platt NJ, Cragg J (2015) The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation. Neurobiol Dis 82:262–268

    Article  PubMed  CAS  Google Scholar 

  • Jones IW, Bolam JP, Wonnacott S (2001) Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. J Comp Neurol 439:235–247

    Article  PubMed  CAS  Google Scholar 

  • Kamiya H, Takano Y, Kusunoki T, Uchimura K, Kohjimoto Y, Honda K, Sakurai Y (1982) Studies on 125I-alpha bungarotoxin binding sites in rat brain. Brain Res Bull 8:431–433

    Article  PubMed  CAS  Google Scholar 

  • Kayadjanian N, Retaux S, Menetrey A, Besson MJ (1994) Stimulation by nicotine of the spontaneous release of [3H]gamma-aminobutyric acid in the substantia nigra and in the globus pallidus of the rat. Brain Res 649:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kayadjanian N, Menetrey A, Besson MJ (1997) Activation of muscarinic receptors stimulates GABA release in the rat globus pallidus. Synapse 26:131–139

    Article  PubMed  CAS  Google Scholar 

  • Kelland MD, Soltis RP, Anderson LA, Bergstrom DA, Walters JR (1995) In vivo characterization of two cell types in the rat globus pallidus which have opposite responses to dopamine receptor stimulation: comparison of electrophysiological properties and responses to apomorphine, dizocilpine, and ketamine anesthesia. Synapse 20:338–350

    Article  PubMed  CAS  Google Scholar 

  • Kita H (1994) Physiology of two disynaptic pathways from the sensori-motor cortex to the basal ganglia output nuclei. In: Percheron G, McKenzie JS, Féger J (eds) The basal ganglia IV. Springer, pp 263–276

  • Kita H, Kita T (2011) Cortical stimulation evokes abnormal responses in dopamine-depleted rata basal ganglia. J Neurosci 31:10311–10322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kita H, Kitai ST (1994) The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Res 636:308–319

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Nambu A, Kaneda K, Tachibana Y, Takada M (2004) Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol 92:3069–3084

    Article  PubMed  CAS  Google Scholar 

  • Koos T, Tepper JM (2002) Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22:529–535

    PubMed  CAS  Google Scholar 

  • Leisman G, Melillo R (2013) The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci 24:9–25

    Article  PubMed  Google Scholar 

  • Lindvall O, Bjorklund A (1979) Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res 172:169–173

    Article  PubMed  CAS  Google Scholar 

  • Mallet N, Ballion B, LeMoine C, Gonnon E (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884

    Article  PubMed  CAS  Google Scholar 

  • Mallet N, Pogosyan A, Márton LF, Bolam JP, Brown P, Magill P (2008) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 28:14245–14258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mallet N, Micklem BR, Henny P et al (2012) Dichotomous organization of the external globus pallidus. Neuron 74:1075–1086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matsumura M, Tremblay L, Richard H, Filion M (1995) Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum. Neuroscience 65:59–70

    Article  PubMed  CAS  Google Scholar 

  • Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552–13566

    Article  PubMed  CAS  Google Scholar 

  • Meyer PM, Tielpolt S, Barthel H, Hesse S, Sabri O (2014) Radioligand imaging of α4β2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease. Q J Nucl Med Mol Imaging 58:376–386

    PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Clarke CE, Boyce S, Robertson RG, Peggs D, Sambrook MA, Crossman AR (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:213–226

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Hori N, Kastuda N (1985) Neostriatal evoked inhibition and effects of dopamine on globus pallidal neurons in rat slice preparations. Brain Res 358:282–286

    Article  PubMed  CAS  Google Scholar 

  • Nambu A, Llinas R (1994) Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol 72:1127–1139

    PubMed  CAS  Google Scholar 

  • Nambu A, Tokuno H, Hamada I et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300

    PubMed  CAS  Google Scholar 

  • Nenadic Z, Burdick JW (2005) Spike detection using the continuous wavelet transform. Biomed Eng IEEE Trans 52:74–87

    Article  Google Scholar 

  • Nishibayashi H, Ogura M, Kakishita K et al (2011) Cortically evoked responses of human pallidal neurons recorded during stereotactic neurosurgery. Mov Disord 26:469–476

    Article  PubMed  Google Scholar 

  • Ogura M, Kita H (2000) Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat. J Neurophysiol 83:3366–3376

    PubMed  CAS  Google Scholar 

  • Pan WX, Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Querejeta E, Delgado A, Valdiosera R, Erlij D, Aceves J (2001) Intrapallidal D2 dopamine receptors control globus pallidus neuron activity in the rat. Neurosci Lett 300:79–82

    Article  PubMed  CAS  Google Scholar 

  • Querejeta E, Alatorre A, Rios A, Barrientos R, Oviedo-Chavez A, Bobadilla-Lugo RA, Delgado A (2012) Striatal input- and rate-dependent effects of muscarinic receptors on pallidal firing. ScientificWorldJournal 2012:547638

    Article  PubMed  PubMed Central  Google Scholar 

  • Quik M (2004) Smoking, nicotine and Parkinson’s disease. Trends Neurosci 27:561–568

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Kulak JM (2002) Nicotine and nicotinic receptors; relevance to Parkinson’s disease. Neurotoxicology 23:581–594

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Wonnacott S (2011) alpha6beta2* and alpha4beta2* nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev 63:938–966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quiroga-Quian R, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687

    Article  CAS  Google Scholar 

  • Rogers SW, Gahring LC, Collins AC, Marks M (1998) Age-related changes in neuronal nicotinic acetylcholine receptor subunit alpha4 expression are modified by long-term nicotine administration. J Neurosci 18:4825–4832

    PubMed  CAS  Google Scholar 

  • Sadek AR, Magill PJ, Bolam JP (2007) A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J Neurosci 27:6352–6362

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Loewy AD (1982) Projections of the pedunculopontine tegmental nucleus in the rat: evidence for additional extrapyramidal circuitry. Brain Res 252:367–372

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Pope-Coleman A, Van Velson M, Menzaghi F, Lloyd GK (1998a) Effects of SIB-1508Y, a novel neuronal nicotinic acetylcholine receptor agonist, on motor behavior in parkinsonian monkeys. Mov Disord 13:637–642

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Van Velson M, Menzaghi F, Lloyd GK (1998b) Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-treated monkeys: comparison with levodopa treatment. Ann Neurol 43:311–317

    Article  PubMed  CAS  Google Scholar 

  • Soto E, Vega R (1987) A Turbo Pascal program for on line spike data acquisition and analysis using a standard serial port. J Neurosci Methods 19:61–68

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Graybiel AM (2012) A feud that wasn’t: acetylcholine evokes dopamine release in the striatum. Neuron 75:1–3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22:2963–2976

    PubMed  CAS  Google Scholar 

  • Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64

    Article  PubMed  CAS  Google Scholar 

  • Tkatch T, Baranauskas G, Surmeier DJ (1998) Basal forebrain neurons adjacent to the globus pallidus co-express GABAergic and cholinergic marker mRNAs. NeuroReport 9:1935–1939

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  PubMed  CAS  Google Scholar 

  • Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Zhou FM, Wilson CJ, Dani JA (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol 53:590–605

    Article  PubMed  CAS  Google Scholar 

  • Zhou FM, Wilson C, Dani JA (2003) Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist 9:23–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant No. 20131018 from SEPI-IPN to E. Querejeta.

Conflict of interest

The authors declare no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Querejeta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos, A., Barrientos, R., Alatorre, A. et al. Dopamine-dependent modulation of rat globus pallidus excitation by nicotine acetylcholine receptors. Exp Brain Res 234, 605–616 (2016). https://doi.org/10.1007/s00221-015-4491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4491-6

Keywords

Navigation