Skip to main content

Advances in the Understanding of Binaural Information Processing: Consideration of the Stimulus as Processed

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

  • 2250 Accesses

Abstract

Progress made over the last 20 years within the broad field of binaural information processing has, in many ways, stemmed from a more sophisticated understanding of stimuli as processed as opposed to consideration of external, physical stimuli. The knowledge gained has permitted important advances in the understanding of specific, peripheral and/or central, mechanisms that underlie and constrain binaural capabilities. Many of the advances have stemmed from earphone-based studies concerning binaural detection, discrimination, and lateralization. The enterprise, taken together with advances in other areas of auditory research, has allowed for the development of more comprehensive and accurate, quantitative models of human binaural performance. At this juncture, it appears that progress in the future would be fostered by a more integrative approach in which common sets of parametrically constructed stimuli that have been proven to be theoretically diagnostic would be employed in “parallel” behavioral and neurophysiological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernstein, L. R., & Trahiotis, C. (1982). Detection of interaural delay in high-frequency noise. Journal of the Acoustical Society of America, 71, 147–152.

    Article  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (1985). Lateralization of sinusoidally-amplitude-modulated tones: Effects of spectral locus and temporal variation. Journal of the Acoustical Society of America, 78, 514–523.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (1994). Detection of interaural delay in high-frequency SAM tones, two-tone complexes, and bands of noise. Journal of the Acoustical Society of America, 95, 3561–3567.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (1995). Binaural interference effects measured with masking-level difference and with ITD- and IID-discrimination paradigms. Journal of the Acoustical Society of America, 98, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, L. R. & Trahiotis, C. (1996). Binaural beats at high frequencies: Listeners’ use of envelope-based interaural temporal and intensitive disparities. Journal of the Acoustical Society of America, 99, 1670–1679.

    Article  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli. Journal of the Acoustical Society of America, 112, 1026–1036.

    Article  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2003). Enhancing interaural-delay-based extents of laterality at high frequencies by using ‘transposed stimuli’. Journal of the Acoustical Society of America, 113, 3335–3347.

    Article  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2004). The apparent immunity of high-frequency “transposed” stimuli to low-frequency binaural interference. Journal of the Acoustical Society of America, 116, 3062–3069.

    Article  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2008). Discrimination of interaural temporal disparities conveyed by high-frequency sinusoidally amplitude-modulated tones and high-frequency transposed tones: Effects of spectrally flanking noises. Journal of the Acoustical Society of America, 124, 3088–3094.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2010). Accounting quantitatively for sensitivity to envelope-based interaural temporal disparities at high frequencies. Journal of the Acoustical Society of America, 128, 1224–1234.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2012). Lateralization produced by interaural temporal and intensitive disparities of high-frequency, raised-sine stimuli: Data and modeling. Journal of the Acoustical Society of America, 131, 409–415.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein, L. R., Par, Steven van de, & Trahiotis, C. (1999). The normalized correlation: Accounting for NoSπ thresholds obtained with Gaussian and “low-noise” masking noise. Journal of the Acoustical Society of America, 106, 870–876.

    Google Scholar 

  • Best, V., Gallun, F. J., Carlile, S., & Shinn-Cunningham, B. (2007). Binaural interference and auditory grouping. Journal of the Acoustical Society of America, 121, 1070–1076.

    Article  PubMed  Google Scholar 

  • Blauert, J. (1983). Spatial hearing: The psychophysics of human Sound Localization. Cambridge, MA: MIT Press.

    Google Scholar 

  • Colburn, H. S., & Esquissaud, P. (1976). An auditory-nerve model for interaural time discrimination of high-frequency complex stimuli. Journal of the Acoustical Society of America, 59, S23.

    Article  Google Scholar 

  • Domnitz, R. H., & Colburn, H. S. (1977). Lateral position and interaural discrimination. Journal of the Acoustical Society of America, 61, 1586–1598.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, A. A., & Oxenham, A. J. (2008). Effects of level and background noise on interaural time difference discrimination for transposed stimuli. Journal of the Acoustical Society of America, 123, EL1–EL7.

    Article  PubMed  Google Scholar 

  • Durlach, N. I., & Colburn, H. S. (1978). Binaural phenomena. In E. C. Carterette & M. P. Friedman (Eds.), Handbook of perception: Hearing (pp. 365–466). New York: Academic Press.

    Google Scholar 

  • Eddins, D. A., & Barber, L. E. (1998). The influence of stimulus envelope and fine structure on the binaural masking level difference. Journal of the Acoustical Society of America, 103, 2578–2589.

    Article  PubMed  CAS  Google Scholar 

  • Ewert, S. D., & Dau, T. (2000). Characterizing frequency selectivity for envelope fluctuations. Journal of the Acoustical Society of America, 108, 1181–1196.

    Article  PubMed  CAS  Google Scholar 

  • Feddersen, W. E., Sandel, T. T., Teas, D. C., & Jeffress, L. A. (1957). Localization of high-frequency tones. Journal of the Acoustical Society of America, 29, 988–991.

    Article  Google Scholar 

  • Grantham, D. W. (1995). Spatial hearing and related phenomena. In B. C. J. Moore (Ed.), Handbook of perception and cognition: Hearing. San Diego: Academic Press.

    Google Scholar 

  • Hall, J. W. III, Grose, J. H., & Hartmann, W. M. (1998). The masking-level difference in low-noise noise. Journal of the Acoustical Society of America, 103, 2573–2577.

    Article  PubMed  Google Scholar 

  • Hartung, K., & Trahiotis, C. (2001). Peripheral auditory processing and investigations of the ‘precedence effect’ which utilize successive transient stimuli. Journal of the Acoustical Society of America, 110, 1505–1513.

    Article  PubMed  CAS  Google Scholar 

  • Heijden, M. van der, & Trahiotis, C. (1999). Masking with interaurally delayed stimuli: The use of ‘internal’ delays in binaural detection. Journal of the Acoustical Society of America, 105, 388–399.

    Google Scholar 

  • Heijden, M. van der, Trahiotis, C., Kohlrausch, A., & Par, Steven van de (1997). Binaural detection with spectrally nonoverlapping signals and maskers: Evidence for masking by aural distortion products. Journal of the Acoustical Society of America, 102, 2966–2972.

    Google Scholar 

  • Heller, L. M., & Trahiotis, C. (1996). Extents of laterality and binaural interference effects. Journal of the Acoustical Society of America, 99, 3632–3637.

    Article  PubMed  CAS  Google Scholar 

  • Joris, P. X., van de Sande, B., Recio-Spinoso, A., & Heijden, M. van der (2006). Auditory midbrain and nerve responses to sinusoidal variations in interaural correlation. Journal of Neuroscience, 26, 279–289.

    Google Scholar 

  • Klumpp, R. G., & Eady, H. R. (1956). Some measurements of interaural time difference thresholds. Journal of the Acoustical Society of America, 28, 859–860.

    Article  Google Scholar 

  • Kohlrausch, A., Fassel, R., & Dau, T. (2000). The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. Journal of the Acoustical Society of America, 108, 723–734.

    Article  PubMed  Google Scholar 

  • Lindemann, W. (1986a). Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. Journal of the Acoustical Society of America, 80, 1608–1622.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, W. (1986b). Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wave front. Journal of the Acoustical Society of America, 80, 1623–1630.

    Article  PubMed  CAS  Google Scholar 

  • Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. (1999). The precedence effect. Journal of the Acoustical Society of America, 106, 1633–1654.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, D., & Pasanen, E. G. (1976). Lateralization at high frequencies based on interaural time differences. Journal of the Acoustical Society of America, 59, 634–639.

    Article  PubMed  CAS  Google Scholar 

  • Meddis, R. (1986). Simulation of mechanical to neural transduction in the auditory receptor. Journal of the Acoustical Society of America, 79, 702–711.

    Article  PubMed  CAS  Google Scholar 

  • Meddis, R. (1988). Simulation of auditory-neural transduction: Further studies. Journal of the Acoustical Society of America, 83, 1056–1063.

    Article  PubMed  CAS  Google Scholar 

  • Meddis, R., Hewitt M. J., & Shackleton, T. M. (1990). Implementation details of a computational model of the inner hair-cell/auditory-nerve synapse. Journal of the Acoustical Society of America, 87, 1013–1016.

    Article  Google Scholar 

  • Middlebrooks, J. C., & Snyder, R. L. (2010). Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. Journal of Neuroscience, 30, 1937–1946.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (2001). Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 110, 1067–1073.

    Article  PubMed  CAS  Google Scholar 

  • Nuetzel, J. M., & Hafter, E. R. (1981). Discrimination of interaural delays in complex waveforms: Spectral effects. Journal of the Acoustical Society of America, 69, 1112–1118.

    Article  Google Scholar 

  • Par, S. van de, & Kohlrausch, A. (1997). A new approach to comparing binaural masking level differences at low and high frequencies. Journal of the Acoustical Society of America, 101, 1671–1680.

    Google Scholar 

  • Par, S. van de, Trahiotis, C., & Bernstein, L. R. (2000). The use of off-frequency information in a high-frequency binaural discrimination task. Acustica, 86, 526–531.

    Google Scholar 

  • Par, S. van de, Trahiotis, C., & Bernstein, L. R. (2001). A consideration of the normalization that is typically included in correlation-based models of binaural detection. Journal of the Acoustical Society of America, 109, 830–833.

    Google Scholar 

  • Rodríguez, F. A., Read, H. L., & Escabí, M. A. (2010). Spectral and temporal modulation tradeoff in the inferior colliculus. Journal of Neurophysiology, 103, 887–903.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruggero, M. A. (1992). Responses to sound of the basilar membrane of the mammalian cochlea. Current Opinion in Neurobiology, 2, 449–456.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sellick, P. M., Patuzzi, R., & Johnstone, B. M. (1982). Measurement of the basilar membrane motion in the guinea pig using the Mössbauer technique. Journal of the Acoustical Society of America, 72, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Shinn-Cunningham, B. G., Zurek, P., Durlach, N. I., & Clifton, R. K. (1995). Cross-frequency interactions in the precedence effect. Journal of the Acoustical Society of America, 98,164–171.

    Article  PubMed  CAS  Google Scholar 

  • Stern, R. M., & Colburn, H. S. (1978). Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. Journal of the Acoustical Society of America, 64, 127–140.

    Article  PubMed  Google Scholar 

  • Stern, R. M., Zeiberg, A. S., & Trahiotis, C. (1988). Lateralization of complex binaural stimuli: A weighted image model. Journal of the Acoustical Society of America, 84, 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Trahiotis, C., Bernstein, L. R., & Akeroyd, M. A. (2001). Manipulating the “straightness” and “curvature” of patterns of interaural cross-correlation affects listeners’ sensitivity to changes in interaural delay. Journal of the Acoustical Society of America, 109, 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Verhulst, S., Bianchi, F., & Dau, T. (2012). Cochlear contributions to the precedence effect. In B. C. J. Moore, R. D. Patterson, I. Winter, R. P. Carlyon, & H. E. Gockel (Eds.), Basic aspects of hearing: Physiology and perception, New York: Springer Science + Business Media.

    Google Scholar 

  • Wallach, H., Newman, E. B. & Rosenzweig, M. R. (1949). The precedence effect in sound localization. American Journal of Psychology, 52, 315–336.

    Article  Google Scholar 

  • Xia, J. & Shinn-Cunningham, B. (2011). Isolating mechanisms that influence measures of the precedence effect: Theoretical predictions and behavioral tests. Journal of the Acoustical Society of America, 130, 866–882.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yin, T. C., & Kuwada, S. (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. Journal of Neurophysiology, 50, 1000–1019.

    PubMed  CAS  Google Scholar 

  • Yost, W. A., & Soderquist, D. R. (1984). The precedence effect: Revisited. Journal of the Acoustical Society of America, 76, 1377–1383.

    Article  PubMed  CAS  Google Scholar 

  • Zurek, P. M. (1987). The precedence effect. In W. A. Yost & G. Gourevitch (Eds.), Directional hearing (pp. 85–105). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Zurek, P. M., & Durlach, N. I. (1987). Masker-bandwidth dependence in homophasic and antiphasic tone detection. Journal of the Acoustical Society of America, 81, 459–464.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki, J., & Feldman, R. S. (1956). Just noticeable differences in dichotic phase. Journal of the Acoustical Society of America, 28, 860–864.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by research grant NIH DC-04147 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie R. Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trahiotis, C., Bernstein, L.R. (2014). Advances in the Understanding of Binaural Information Processing: Consideration of the Stimulus as Processed. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_31

Download citation

Publish with us

Policies and ethics