Skip to main content
Log in

Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Motor-evoked potentials (MEP) in the tibialis anterior (TA) muscle were shown to be facilitated by repetitive electrical stimulation of the common peroneal (CP) nerve at intensities above motor threshold. The TA electromyogram (EMG) and ankle flexion force were recorded in response to transcranial magnetic stimulation (TMS) of the leg area of the motor cortex to evaluate the excitability of cortico-spinal-muscular pathways. Repetitive stimulation of the CP nerve at 25 Hz for 30 min increased the MEP by 50.3 ± 13.6% (mean ± S.E.) at a TMS intensity that initially gave a half-maximum MEP (MEPh). In contrast the maximum MEP (MEPmax) did not change. Ankle flexion force (103 ± 21.9%) and silent period duration (75.3 ± 12.9%) also increased. These results suggest an increase in corticospinal excitability, rather than total connectivity due to repetitive CP stimulation. Facilitation was evident after as little as 10 min of stimulation and persisted without significant decrement for at least 30 min after stimulation. The long duration of silent period following CP stimulation (99.2 ± 14.8 ms) suggests that this form of stimulation may have effects on the motor cortex. To exclude the possibility that MEPh facilitation was primarily due to sensory fibre activation, we performed several control experiments. Preferentially activating Ia muscle afferents by vibration in the absence of motor activity had no significant effect. Cutaneous afferent activation via stimulation of the superficial peroneal nerve increased the amplitude of responses at MEPmax rather than MEPh. Concurrent tendon vibration and superficial peroneal nerve stimulation failed to facilitate TA MEP responses. In summary, repetitive electrical stimulation of the CP nerve elicits lasting changes in corticospinal excitability, possibly as a result of co-activating motor and sensory fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–D
Fig. 3A–C
Fig. 4A–G
Fig. 5A, B
Fig. 6A, B

Similar content being viewed by others

References

  • Awiszus F, Feistner H (1994) Quantification of D- and I-wave effects evoked by transcranial magnetic brain stimulation on the tibialis anterior motoneuron pool in man. Exp Brain Res 101:153–158

    CAS  PubMed  Google Scholar 

  • Bertasi V, Bertolasi L, Frasson E, Priori A (2000) The excitability of human cortical inhibitory circuits responsible for the muscle silent period after transcranial brain stimulation. Exp Brain Res 132:384–389

    Article  CAS  PubMed  Google Scholar 

  • Bütefisch CM, Davis BC, Wise SP, Sawaki L, Kopylev L, Classen J, Cohen LG (2000) Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci U S A 97:3661–3665

    CAS  PubMed  Google Scholar 

  • Capaday C, Cooke JD (1981) The effects of muscle vibration on the attainment of intended final position during voluntary human arm movements. Exp Brain Res 42:228–230

    CAS  PubMed  Google Scholar 

  • Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139

    CAS  PubMed  Google Scholar 

  • Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–763

    Article  CAS  PubMed  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    CAS  PubMed  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Meglio M, Cioni B, Tonali P, Rothwell JC (2001) Descending spinal cord volleys evoked by transcranial magnetic and electric stimulation of the motor cortex leg area in conscious humans. J Physiol 537:1047–1058

    Article  PubMed  Google Scholar 

  • Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270:305–307

    CAS  PubMed  Google Scholar 

  • Fraser C, Power M, Hamdy S, Rothwell J, Hobday D, Hollander I, Tyrell P, Hobson A, Williams S, Thompson D (2002) Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron 34:831–840

    CAS  PubMed  Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    CAS  PubMed  Google Scholar 

  • Garvey MA, Ziemann U, Becker DA, Barker CA, Bartco JJ (2001) New graphical method to measure silent periods evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG (1998) Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci 1:64–68

    Article  CAS  PubMed  Google Scholar 

  • Ikeda A, Ohara S, Matsumoto R, Kunieda T, Nagamine T, Miyamoto S, Kohara N, Taki W, Hashimoto N, Shibaski H (2000) Role of primary sensorimotor cortices in generating inhibitory motor responses in humans. Brain 123:1710–1721

    PubMed  Google Scholar 

  • Irlbacher K, Meyer BU, Voss M, Brandt SA, Roricht S (2002) Spatial reorganization of cortical motor output maps of stump muscles in human upper-limb amputees. Neurosci Lett 321:129–132

    Article  CAS  PubMed  Google Scholar 

  • Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol 540:623–633

    Article  CAS  PubMed  Google Scholar 

  • Kaji R, Rothwell JC, Katama M, Ikeda T, Kubori T, Kohara N, Mezaki T, Shibasaki H, Kimura J (1995). Tonic vibration reflex and muscle afferent block in writers cramp. Ann Neurol 38:155–162

    CAS  PubMed  Google Scholar 

  • Khaslavskaia S, Ladoucer M, Sinkjaer T (2002) Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res 145:309–315

    Article  PubMed  Google Scholar 

  • Kossev A, Siggelkow S, Kapels H, Dengler R, Rollnik JD (2001) Crossed effects of muscle vibration on motor-evoked potentials. Clin Neurophysiol 112:453–456

    CAS  PubMed  Google Scholar 

  • Lentz M, Nielson JF (2002) Post-exercise facilitation and depression of M wave and motor evoked potentials in healthy subjects. Clin Neurophysiol 113:1092–1098

    Article  PubMed  Google Scholar 

  • Macefield VG, Gandevia SC, Bigland-Ritchie B, Gorman RB, Burke D (1993) The firing rates of human motoneurons voluntarily activated in the absence of muscle afferent feedback. J Physiol 471:429–443

    CAS  PubMed  Google Scholar 

  • Nielson J, Peterson N, Fedirchuk B (1997) Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurons in man. J Physiol 501:473–484

    CAS  PubMed  Google Scholar 

  • Onishi H, Yagi R, Akasaka K, Momose K, Ihashi K, Handa Y (2000) Relationship between EMG signals and force in human vastus lateralis muscle using multiple bipolar wire electrodes. J Electromyogr Kinesiol 10:59–67

    Article  CAS  PubMed  Google Scholar 

  • Pitcher JB, Miles TS (2002) Alterations in corticospinal excitability with imposed vs. voluntary fatigue in human hand muscles. J Appl Physiol 92:2131–2138

    Google Scholar 

  • Ridding MC, Rothwell JC (1995) Reorganization in human motor cortex. Can J Physiol Pharmacol 73:218–222

    CAS  PubMed  Google Scholar 

  • Ridding MC, Taylor JL (2001) Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. J Physiol 537:623–631

    CAS  PubMed  Google Scholar 

  • Ridding MC, Brouwer MC, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 112:1461–1469

    CAS  PubMed  Google Scholar 

  • Sacco P, Thickbroom GW, Thompson ML, Mastaglia FL (1997) Changes in corticomotor excitation and inhibition during prolonged submaximal muscle contractions. Muscle Nerve 20:1158–1166

    CAS  PubMed  Google Scholar 

  • Samii A, Wassermann EM, Ikoma K, Mercuri B, Hallett M (1996) Characterization of postexercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation. Neurology 46:1376–1382

    CAS  PubMed  Google Scholar 

  • Schnitzler A, Benecke R (1994) The silent period after transcranial magnetic stimulation is of exclusive cortical origin: evidence from isolated cortical ischemic lesions in man. Neurosci Lett 180:41–45

    CAS  PubMed  Google Scholar 

  • Shimizu T, Hino T, Komori T, Harris S (2000) Loss of the muscle silent period evoked by transcranial magnetic stimulation of the motor cortex in patients with cervical cord lesions. Neurosci Lett 286:199–202

    Article  CAS  PubMed  Google Scholar 

  • Sinkjaer T, Khaslavskaia S (2002) Tibialis anterior motor cortex excitability following repetitive electrical stimulation (RES) of CP nerve depends on the voluntary motor cortical drive during the time of RES. Soc Neurosci Abst 562.4

  • Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of human motor cortical plasticity induced by interventional paired associative stimulation. J Physiol 543:699–708

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Gandevia SC (2001) Transcranial magnetic stimulation and human muscle fatigue. Muscle Nerve 24:18–29

    CAS  PubMed  Google Scholar 

  • Tinazzi M, Farina S, Tamburin S, Facchini S, Fiaschi A, Restivo D, Berardelli A (2003) Task-dependent modulation of excitatory and inhibitory functions within the human primary motor cortex. Exp Brain Res 150:222–229

    PubMed  Google Scholar 

  • Totosy de Zepetnek JE, Gordon T, Stein RB, Zung HV (1991) Comparison of force and EMG measures in normal and reinnervated tibialis anterior muscles of the rat. Can J Physiol Pharmacol 69:1774–1783

    PubMed  Google Scholar 

  • Trompetto C, Buccolieri A, Marinelli L, Abbruzzese G (2001) Differential modulation of motor evoked potential and silent period by activation of intracortical inhibitory circuits. Clin Neurophysiol 112:1822–1827

    Article  CAS  PubMed  Google Scholar 

  • Wieler M, Stein RB, Ladouceur M, Whittaker M, Smith AW, Naaman S, Barbeau H, Bugaresti J, Aimone E (1999) Multicenter evaluation of electrical stimulation systems for walking. Arch Phys Med Rehabil 80:495–500

    CAS  PubMed  Google Scholar 

  • Windhorst U (1996) On the role of recurrent inhibitory feedback in motor control. Prog Neurobiol 49:517–587

    Article  CAS  PubMed  Google Scholar 

  • Zehr EP, Fujita K, Stein RB (1998) Reflexes from the superficial peroneal nerve during walking in stroke subjects. J Neurophysiol 79:848–858

    CAS  PubMed  Google Scholar 

  • Ziemann U, Netz J, Szelenyi A, Homberg V (1993) Spinal and supraspinal mechanisms contribute to the silent period in the contracting soleus muscle after transcranial magnetic stimulation of human motor cortex. Neurosci Lett 156:167–171

    CAS  PubMed  Google Scholar 

  • Ziemann U, Hallett M, Cohen LG (1998) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007

    CAS  PubMed  Google Scholar 

  • Ziemann U, Muellbacher W, Hallet M, Cohen LG (2001) Modulation of practice-dependent plasticity in human motor cortex. Brain 124:1171–1181

    CAS  PubMed  Google Scholar 

  • Zijdewint I, Zwarts MJ, Kernell D (2000) Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle. Exp Brain Res 130:529–532

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Doug Weber for his assistance with statistical analysis and Dr. Charles Capaday for his suggestions. This research was supported by the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knash, M.E., Kido, A., Gorassini, M. et al. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Exp Brain Res 153, 366–377 (2003). https://doi.org/10.1007/s00221-003-1628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1628-9

Keywords

Navigation