Skip to main content
Log in

Modulation of soleus corticospinal excitability during Achilles tendon vibration

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Soleus (SOL) corticospinal excitability has been reported to increase during Achilles tendon vibration. The aim of the present study was to further investigate SOL corticospinal excitability and elucidate the changes to intracortical mechanisms during Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the SOL by transcranial magnetic stimulation (TMS) of the corresponding motor cortical area of the leg with and without 50-Hz Achilles tendon vibration. SOL input–output curves were determined. Paired-pulse protocols were also performed to investigate short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) by conditioning test TMS pulses with sub-threshold TMS pulses at inter-stimulus intervals of 3 and 13 ms, respectively. During Achilles tendon vibration, motor threshold was lower than in the control condition (43 ± 13 vs. 49 ± 11 % of maximal stimulator output; p = 0.008). Input–output curves were also influenced by vibration, i.e. there was increased maximal MEP amplitude (0.694 ± 0.347 vs. 0.268 ± 0.167 mV; p < 0.001), decreased TMS intensity to elicit a MEP of half the maximal MEP amplitude (100 ± 13 vs. 109 ± 9 % motor threshold; p = 0.009) and a strong tendency for decreased slope constant (0.076 ± 0.04 vs. 0.117 ± 0.04; p = 0.068). Vibration reduced ICF (98 ± 61 vs. 170 ± 105 % of test MEP amplitude; p = 0.05), but had no effect on SICI (53 ± 26 vs. 48 ± 22 % of test MEP amplitude; p = 0.68). The present results further document the increased vibration-induced corticospinal excitability in the soleus muscle and suggest that this increase is not mediated by changes in SICI or ICF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

I 50 :

Stimulus intensity required to obtain a MEP amplitude of half the size of the plateau

ICF:

Intracortical facilitation

MEP:

Motor-evoked potential

MEPa :

MEP amplitude

P :

Plateau of the input–output curve

rMT:

Resting motor threshold

SICI:

Short-interval intracortical inhibition

SOL:

Soleus

TMS:

Transcranial magnetic stimulation

vMT:

Vibrating motor threshold

References

  • Abbruzzese M, Minatel C, Faga D, Favale E (1997) Testing for pre-synaptic and post-synaptic changes in the soleus H reflex pathway following selective muscle vibration in humans. Neurosci Lett 231:99–102

    Article  CAS  PubMed  Google Scholar 

  • Boroojerdi B, Battaglia F, Muellbacher W, Cohen LG (2001) Mechanisms influencing stimulus-response properties of the human corticospinal system. Clin Neurophysiol 112:931–937

    Article  CAS  PubMed  Google Scholar 

  • Carroll TJ, Riek S, Carson RG (2001) Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112:193–202

    Article  CAS  PubMed  Google Scholar 

  • Claus D, Mills KR, Murray NM (1988) Facilitation of muscle responses to magnetic brain stimulation by mechanical stimuli in man. Exp Brain Res 71:273–278

    Article  CAS  PubMed  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input–output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    Article  CAS  PubMed  Google Scholar 

  • Giesebrecht S, Martin PG, Gandevia SC, Taylor JL (2010) Facilitation and inhibition of tibialis anterior responses to corticospinal stimulation after maximal voluntary contractions. J Neurophysiol 103:1350–1356. doi:10.1152/jn.00879.200900879.2009

    Article  PubMed  Google Scholar 

  • Hopkins WG (2000) Measures of reliability in sports medicine and science. Sports Med 30:1–15

    Article  CAS  PubMed  Google Scholar 

  • Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol 540:623–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kossev A, Siggelkow S, Schubert M, Wohlfarth K, Dengler R (1999) Muscle vibration: different effects on transcranial magnetic and electrical stimulation. Muscle Nerve 22:946–948

    Article  CAS  PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lapole T, Pérot C (2010) Effects of repeated Achilles tendon vibration on triceps surae force production. J Electromyogr Kinesiol 20:648–654. doi:10.1016/j.jelekin.2010.02.001

    Article  PubMed  Google Scholar 

  • Lapole T, Deroussen F, Perot C, Petitjean M (2012) Acute effects of Achilles tendon vibration on soleus and tibialis anterior spinal and cortical excitability. Appl Physiol Nutr Metab 37:657–663. doi:10.1139/h2012-032

    Article  PubMed  Google Scholar 

  • Lapole T, Canon F, Perot C (2013) Ipsi- and contralateral H-reflexes and V-waves after unilateral chronic Achilles tendon vibration. Eur J Appl Physiol 113:2223–2231. doi:10.1007/s00421-013-2651-6

    Article  PubMed  Google Scholar 

  • Lapole T, Temesi J, Gimenez P, Arnal PJ, Millet GY, Petitjean M (2015) Achilles tendon vibration-induced changes in plantar flexor corticospinal excitability. Exp Brain Res 233:441–448. doi:10.1007/s00221-014-4125-4

    Article  PubMed  Google Scholar 

  • Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D (1991) Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. J Physiol 440:497–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McNeil CJ, Butler JE, Taylor JL, Gandevia SC (2013) Testing the excitability of human motoneurons. Front Hum Neurosci 7:152. doi:10.3389/fnhum.2013.00152

    Article  PubMed Central  PubMed  Google Scholar 

  • Mileva KN, Bowtell JL, Kossev AR (2009) Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp Physiol 94:103–116. doi:10.1113/expphysiol.2008.042689

    Article  PubMed  Google Scholar 

  • Perez MA, Lungholt BK, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159:197–205. doi:10.1007/s00221-004-1947-5

    Article  PubMed  Google Scholar 

  • Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105:340–344

    Article  CAS  PubMed  Google Scholar 

  • Roll JP, Gilhodes JC, Tardy-Gervet MF (1980) Effects of vision on tonic vibration response of a muscle or its antagonists in normal man. Experientia 36:70–72

    Article  CAS  PubMed  Google Scholar 

  • Rollnik JD, Siggelkow S, Schubert M, Schneider U, Dengler R (2001) Muscle vibration and prefrontal repetitive transcranial magnetic stimulation. Muscle Nerve 24:112–115

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz K, Rothwell JC (2003) Differential effect of muscle vibration on intracortical inhibitory circuits in humans. J Physiol 551:649–660. doi:10.1113/jphysiol.2003.043752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenkranz K, Rothwell JC (2006) Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex. Eur J Neurosci 23:822–829. doi:10.1111/j.1460-9568.2006.04605.x

    Article  PubMed  Google Scholar 

  • Rosenkranz K, Pesenti A, Paulus W, Tergau F (2003) Focal reduction of intracortical inhibition in the motor cortex by selective proprioceptive stimulation. Exp Brain Res 149:9–16. doi:10.1007/s00221-002-1330-3

    PubMed  Google Scholar 

  • Siggelkow S, Kossev A, Schubert M, Kappels HH, Wolf W, Dengler R (1999) Modulation of motor evoked potentials by muscle vibration: the role of vibration frequency. Muscle Nerve 22:1544–1548

    Article  CAS  PubMed  Google Scholar 

  • Steyvers M, Levin O, Verschueren SM, Swinnen SP (2003) Frequency-dependent effects of muscle tendon vibration on corticospinal excitability: a TMS study. Exp Brain Res 151:9–14. doi:10.1007/s00221-003-1427-3

    Article  CAS  PubMed  Google Scholar 

  • Wiesendanger M, Miles TS (1982) Ascending pathway of low-threshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 62:1234–1270

    CAS  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996a) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378. doi:10.1002/ana.410400306

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496(Pt 3):873–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely acknowledge Dr Léonard Féasson for conducting medical inclusions and Régis Bonnefoy for technical assistance. J.T. was supported by a doctoral research grant from the Rhône-Alpes Region. P.A. was supported by a doctoral research grant from the General Directorate for Armament, Ministry of Defence (France).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lapole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapole, T., Temesi, J., Arnal, P.J. et al. Modulation of soleus corticospinal excitability during Achilles tendon vibration. Exp Brain Res 233, 2655–2662 (2015). https://doi.org/10.1007/s00221-015-4336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4336-3

Keywords

Navigation