Skip to main content
Log in

Hemiparetic stroke impairs anticipatory control of arm movement

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Internal models are sensory motor mappings used by the nervous system to anticipate the force requirements of movement tasks. The ability to use internal models likely underlies the development of skillful control of the arm throughout life. It is currently unknown to what extent individuals with hemiparetic stroke can form and implement such internal models. To examine this issue, we measured whether such individuals could learn to anticipate forces applied to their arms by a lightweight robotic device as they practiced reaching to a target. Thirteen subjects with post-stroke hemiparesis were tested. Forces were applied to the arm, which curved the hand path in either the medial or lateral direction, as the subjects reached repeatedly towards a target located in front of them at their workspace boundary. The subjects exhibited a decreased ability to adapt to the perturbing forces with their hemiparetic arms. That is, they did not straighten their reaching path as well, compared to their ipsilesional arms, and they exhibited smaller aftereffects when the perturbing force was unexpectedly removed. The ability to adapt to the force improved significantly with decreasing impairment severity, as quantified using both clinical scales and quantitative strength measurements. Some subjects with strength reductions as severe as 60% were able to adapt to the fields, generating significant aftereffects. We conclude that hemiparetic stroke impairs the ability to implement internal models used for anticipatory control of arm movement, although even some severely weakened subjects retain at least a partial ability to form and use internal models. Finding ways to fully restore this adaptive ability, or to make use of what adaptive ability remains during rehabilitation, is an important goal for improving functional motor recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2.
Fig. 3A,B.
Fig. 4A–C.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Beer RF, Given JD, Dewald JP (1999) Task-dependent weakness at the elbow in patients with hemiparesis. Arch Phys Med Rehabil 80:766–772

    CAS  PubMed  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    CAS  PubMed  Google Scholar 

  • Brunnstrom S (1970) Movement therapy in hemiplegia. Harper and Row, New York

  • Canning CG, Ada L, O'Dwyer N (1999) Slowness to develop force contributes to weakness after stroke. Arch Phys Med Rehabil 80:66–70

    CAS  PubMed  Google Scholar 

  • Conditt MA, Mussa-Ivaldi FA (1999) Central representation of time during motor learning. Proc Natl Acad Sci USA 96:11625–11630

    Google Scholar 

  • Dewald JP, Beer RF (2001) Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve 24:273–283

    Article  CAS  PubMed  Google Scholar 

  • Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ (1995) Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 118:495–510

    PubMed  Google Scholar 

  • Francisco G, Chae J, Chawla H, Kirshblum S, Zorowitz R, Lewis G, Pang S (1998) Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Arch Phys Med Rehabil 79:570–575

    CAS  PubMed  Google Scholar 

  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31

    CAS  PubMed  Google Scholar 

  • Ghez C, Sainburg R (1995) Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol 73:273–284

    CAS  PubMed  Google Scholar 

  • Goodbody SJ, Wolpert DM (1998) Temporal and amplitude generalization in motor learning. J Neurophysiol 79:1825–1838

    CAS  PubMed  Google Scholar 

  • Goodbody SJ, Wolpert DM (1999) The effect of visuomotor displacements on arm movement paths. Exp Brain Res 127:213–223

    CAS  PubMed  Google Scholar 

  • Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N (1993) Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke 24:58–63

    CAS  PubMed  Google Scholar 

  • Gowland C, VanHullenaar S, Torresin W, Moreland J, Vanspall B, Barrecca S, Ward M, Huijbregts M, Stratford P, Barclay-Goddard R (1995) Chedoke-McMaster stroke assessment: development, validation and administration manual. Chedoke-McMaster Hospitals and McMaster University, Hamilton, Canada

    Google Scholar 

  • Gresham GE, Phillips TF, Wolf PA, McNamara PM, Kannel WB, Dawber TR (1979) Epidemiologic profile of long-term stroke disability: the Framingham study. Arch Phys Med Rehabil 60:487–491

    CAS  PubMed  Google Scholar 

  • Ingram HA, van Donkelaar P, Cole J, Vercher JL, Gauthier GM, Miall RC (2000) The role of proprioception and attention in a visuomotor adaptation task. Exp Brain Res 132:114–126

    CAS  PubMed  Google Scholar 

  • Jansen-Osmann P, Richter S, Konczak J, Kalveram KT (2002) Force adaptation transfers to untrained workspace regions in children: evidence for developing inverse dynamic motor models. Exp Brain Res 143:212–220

    Article  PubMed  Google Scholar 

  • Kamper DG, McKenna AN, Kahn LE, Reinkensmeyer DJ (2002) Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil 83:702–707

    Article  PubMed  Google Scholar 

  • Krebs HI, Brashers-Krug T, Rauch SL, Savage CR, Hogan N, Rubin RH, Fischman AJ, Alpert NM (1998) Robot-aided functional imaging: application to a motor learning study. Hum Brain Mapp 6:59–72

    Article  CAS  PubMed  Google Scholar 

  • Patton JL, Mussa-Ivaldi FA (2002) Linear combinations of nonlinear models for predicting human-machine interface forces. Biol Cybern 86:73–87

    Article  PubMed  Google Scholar 

  • Patton JL, Mussa-Ivaldi FA, Rymer WZ (2001) Robotic-induced improvement of movement in hemiparetics via implicit learning. Soc Neurosci Abstr 27:832.816

    Google Scholar 

  • Raasch CC, Mussa-Ivaldi FA, Rymer WZ (1997) Motor learning in reaching movements by hemiparetic subjects. Soc Neurosci Abstr 23:2374

    Google Scholar 

  • Reinkensmeyer DJ, Dewald JPA, Rymer WZ (1999) Guidance-based quantification of arm impairment following brain injury: a pilot study. IEEE Trans Rehabil Eng 7:1–11

    CAS  PubMed  Google Scholar 

  • Reinkensmeyer DJ, McKenna Cole A, Kahn LE, Kamper DG (2002) Directional control of reaching is preserved following mild/moderate stroke and stochastically constrained following severe stroke. Exp Brain Res 143:525–530

    Article  PubMed  Google Scholar 

  • Scheidt RA (1998) Effects of mechanical and visual constraints on motor adaptation during voluntary movement of the arm. PhD Dissertation, Northwestern University, Evanston, IL

  • Scheidt RA, Dingwell JB, Mussa-Ivaldi FA (2001) Learning to move amid uncertainty. J Neurophysiol 86:971–985

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277:821–825

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Sunderland A, Bowers MP, Sluman SM, Wilcock DJ, Ardron ME (1999) Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit. Stroke 30:949–955

    CAS  PubMed  Google Scholar 

  • Takahashi CD, Scheidt RA, Reinkensmeyer DJ (2001) Impedance control and internal model formation when reaching in a randomly varying dynamical environment. J Neurophysiol 86:1047–1051

    CAS  PubMed  Google Scholar 

  • Takahashi CD, Nemet D, Rose-Gottron C, Larson JK, Cooper DM, Reinkensmeyer DJ (2002) Computational motor adaptation — a kindergarten skill. In: Proceedings of 2nd Joint EMBS-BMES Conference, Houston, October 2002, pp 2418–2419

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747

    CAS  PubMed  Google Scholar 

  • Volpe BT, Krebs HI, Hogan N (2001) Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol 14:745–752

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Whitaker Foundation Biomedical Engineering Research Grant RG-98-0004, and Public Health Service Research Grant M01RR00827 from the US National Center for Research Resources. The authors thank Wilfredo Escober MD, Mark Hisayasu OTR, and Christie Rose-Gottron MS, for assistance with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Reinkensmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, C.D., Reinkensmeyer, D.J. Hemiparetic stroke impairs anticipatory control of arm movement. Exp Brain Res 149, 131–140 (2003). https://doi.org/10.1007/s00221-002-1340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-002-1340-1

Keywords

Navigation