Skip to main content

Advertisement

Log in

A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

After ischemic stroke, survivors experience motor dysfunction and deterioration of memory and cognition. These symptoms are associated with the disruption of normal neuronal function, i.e., the secretion of neurotrophic factors, interhemispheric connections, and synaptic activity, and hence the disruption of the normal neural circuit. Exercise is considered an effective and feasible rehabilitation strategy for improving cognitive and motor recovery following ischemic stroke through the facilitation of neuroplasticity. In this review, our aim was to discuss the mechanisms by which exercise-induced neuroplasticity improves motor function and cognitive ability after ischemic stroke. The associated mechanisms include increases in neurotrophins, improvements in synaptic structure and function, the enhancement of interhemispheric connections, the promotion of neural regeneration, the acceleration of neural function reorganization, and the facilitation of compensation beyond the infarcted tissue. We also discuss some common exercise strategies and a novel exercise therapy, robot-assisted movement, which might be widely applied in the clinic to help stroke patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feigin VL, Barker-Collo S, Parag V, Senior H, Lawes CM, Ratnasabapathy Y, Glen E, group As (2010) Auckland Stroke Outcomes Study. Part 1: Gender, stroke types, ethnicity, and functional outcomes 5 years poststroke. Neurology 75 (18):1597–1607. doi:https://doi.org/10.1212/WNL.0b013e3181fb44b3

  3. Frias I, Starrs F, Gisiger T, Minuk J, Thiel A, Paquette C (2018) Interhemispheric connectivity of primary sensory cortex is associated with motor impairment after stroke. Sci Rep 8(1):12601. https://doi.org/10.1038/s41598-018-29751-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Talhada D, Feiteiro J, Costa AR, Talhada T, Cairrao E, Wieloch T, Englund E, Santos CR et al (2019) Triiodothyronine modulates neuronal plasticity mechanisms to enhance functional outcome after stroke. Acta Neuropathol Commun 7(1):216. https://doi.org/10.1186/s40478-019-0866-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang S, Boyd J, Delaney K, Murphy TH (2005) Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 25(22):5333–5338. https://doi.org/10.1523/JNEUROSCI.1085-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP et al (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134(Pt 6):1777–1789. https://doi.org/10.1093/brain/awr094

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tennant KA, Taylor SL, White ER, Brown CE (2017) Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain. Nat Commun 8:15879. https://doi.org/10.1038/ncomms15879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun Y, Cheng X, Wang H, Mu X, Liang Y, Luo Y, Qu H, Zhao C (2017) dl-3-n-Butylphthalide promotes neuroplasticity and motor recovery in stroke rats. Behav Brain Res 329:67–74. https://doi.org/10.1016/j.bbr.2017.04.039

    Article  CAS  PubMed  Google Scholar 

  9. Hutchinson JM, Isaacson LG (2019) Elimination of microglia in mouse spinal cord alters the retrograde CNS plasticity observed following peripheral axon injury. Brain Res 1721:146328. https://doi.org/10.1016/j.brainres.2019.146328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mosberger AC, Miehlbradt JC, Bjelopoljak N, Schneider MP, Wahl AS, Ineichen BV, Gullo M, Schwab ME (2018) Axotomized corticospinal neurons increase supra-lesional innervation and remain crucial for skilled reaching after bilateral pyramidotomy. Cereb Cortex 28(2):625–643. https://doi.org/10.1093/cercor/bhw405

    Article  PubMed  Google Scholar 

  11. Qian J, Wu W, Xiong W, Chai Z, Xu XM, Jin X (2019) Longitudinal optogenetic motor mapping revealed structural and functional impairments and enhanced corticorubral projection after contusive spinal cord injury in mice. J Neurotrauma 36(3):485–499. https://doi.org/10.1089/neu.2018.5713

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rizzi G, Coban M, Tan KR (2019) Excitatory rubral cells encode the acquisition of novel complex motor tasks. Nat Commun 10(1):2241. https://doi.org/10.1038/s41467-019-10223-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu F, Xu K, Liu L, Zhang K, Xia L, Zhang M, Teng C, Tong H et al (2019) Vitamin B12 enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting ER stress-induced neuron injury. Front Pharmacol 10:406. https://doi.org/10.3389/fphar.2019.00406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen K, Zheng Y, Wei JA, Ouyang H, Huang X, Zhang F, Lai CSW, Ren C, So KF, Zhang L (2019) Exercise training improves motor skill learning via selective activation of mTOR. Sci Adv 5 (7):eaaw1888. doi:https://doi.org/10.1126/sciadv.aaw1888

  15. Luo L, Zhu S, Shi L, Wang P, Li M, Yuan S (2019) High intensity exercise for walking competency in individuals with stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 28(12):104414. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104414

    Article  PubMed  Google Scholar 

  16. Luo L, Meng H, Wang Z, Zhu S, Yuan S, Wang Y, Wang Q (2020) Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: a systematic review and meta-analysis. Ann Phys Rehabil Med 63(1):59–68. https://doi.org/10.1016/j.rehab.2019.07.006

    Article  PubMed  Google Scholar 

  17. Begg R, Galea MP, James L, Sparrow WAT, Levinger P, Khan F, Said CM (2019) Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: a randomized controlled trial protocol. Trials 20(1):317. https://doi.org/10.1186/s13063-019-3404-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Melo RTR, Damazio LCM, Lima MC, Pereira VG, Okano BS, Monteiro BS, Natali AJ, Carlo RJD et al (2019) Effects of physical exercise on skeletal muscles of rats with cerebral ischemia. Braz J Med Biol Res 52(12):e8576. https://doi.org/10.1590/1414-431X20198576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Landsmann B, Pinter D, Pirker E, Pichler G, Schippinger W, Weiss EM, Mathie G, Gattringer T et al (2016) An exploratory intervention study suggests clinical benefits of training in chronic stroke to be paralleled by changes in brain activity using repeated fMRI. Clin Interv Aging 11:97–103. https://doi.org/10.2147/CIA.S95632

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schneider A, Rogalewski A, Wafzig O, Kirsch F, Gretz N, Kruger C, Diederich K, Pitzer C et al (2014) Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats. Exp Transl Stroke Med 6(1):3. https://doi.org/10.1186/2040-7378-6-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34. https://doi.org/10.1111/j.1749-6632.2012.06668.x

    Article  PubMed  Google Scholar 

  22. Li S, Wang Y, Jiang D, Ni D, Kutyreff CJ, Barnhart TE, Engle JW, Cai W (2020) Spatiotemporal distribution of agrin after intrathecal injection and its protective role in cerebral ischemia/reperfusion injury. Adv Sci (Weinh) 7(4):1902600. https://doi.org/10.1002/advs.201902600

    Article  CAS  Google Scholar 

  23. Zhao Y, Yan F, Yin J, Pan R, Shi W, Qi Z, Fang Y, Huang Y et al (2018) Synergistic interaction between zinc and reactive oxygen species amplifies ischemic brain injury in rats. Stroke 49(9):2200–2210. https://doi.org/10.1161/STROKEAHA.118.021179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lai TKY, Zhai D, Su P, Jiang A, Boychuk J, Liu F (2019) The receptor-receptor interaction between mGluR1 receptor and NMDA receptor: a potential therapeutic target for protection against ischemic stroke. FASEB J 33(12):14423–14439. https://doi.org/10.1096/fj.201900417R

    Article  CAS  PubMed  Google Scholar 

  25. Davis CK, Gk R (2019) Postischemic supplementation of folic acid improves neuronal survival and regeneration in vitro. Nutr Res 75:1–14. https://doi.org/10.1016/j.nutres.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  26. Li C, Zhang B, Tian S, Hu J, Gao B, Liu P, Hua Y, Bao W et al (2019) Early wheel-running promotes functional recovery by improving mitochondria metabolism in olfactory ensheathing cells after ischemic stroke in rats. Behav Brain Res 361:32–38. https://doi.org/10.1016/j.bbr.2018.12.038

    Article  CAS  PubMed  Google Scholar 

  27. Ye SY, Apple JE, Ren X, Tang FL, Yao LL, Wang YG, Mei L, Zhou YG et al (2019) Microglial VPS35 deficiency regulates microglial polarization and decreases ischemic stroke-induced damage in the cortex. J Neuroinflammation 16(1):235. https://doi.org/10.1186/s12974-019-1633-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Naito MG, Xu D, Amin P, Lee J, Wang H, Li W, Kelliher M, Pasparakis M et al (2020) Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci U S A 117:4959–4970. https://doi.org/10.1073/pnas.1916427117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui W, Liu R, Jin H, Huang Y, Liu W, He M (2020) The protective effect of polyethylene glycol-conjugated urokinase nanogels in rat models of ischemic stroke when administrated outside the usual time window. Biochem Biophys Res Commun 523:887–893. https://doi.org/10.1016/j.bbrc.2020.01.032

    Article  CAS  PubMed  Google Scholar 

  30. Kim MJ, Hur J, Ham IH, Yang HJ, Kim Y, Park S, Cho YW (2013) Expression and activity of the na-k ATPase in ischemic injury of primary cultured astrocytes. Korean J Physiol Pharmacol 17(4):275–281. https://doi.org/10.4196/kjpp.2013.17.4.275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Major S, Petzold GC, Reiffurth C, Windmuller O, Foddis M, Lindauer U, Kang EJ, Dreier JP (2017) A role of the sodium pump in spreading ischemia in rats. J Cereb Blood Flow Metab 37(5):1687–1705. https://doi.org/10.1177/0271678X16639059

    Article  CAS  PubMed  Google Scholar 

  32. Nichols M, Pavlov EV, Robertson GS (2018) Tamoxifen-induced knockdown of the mitochondrial calcium uniporter in Thy1-expressing neurons protects mice from hypoxic/ischemic brain injury. Cell Death Dis 9(6):606. https://doi.org/10.1038/s41419-018-0607-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calvo-Rodriguez M, Hernando-Perez E, Lopez-Vazquez S, Nunez J, Villalobos C, Nunez L (2020) Remodeling of intracellular Ca(2+) homeostasis in rat hippocampal neurons aged in vitro. Int J Mol Sci 21(4). https://doi.org/10.3390/ijms21041549

  34. Wu XS, McNeil BD, Xu J, Fan J, Xue L, Melicoff E, Adachi R, Bai L et al (2009) Ca(2+) and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 12(8):1003–1010. https://doi.org/10.1038/nn.2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin YH, Wu XS, Shi B, Zhang Z, Guo X, Gan L, Chen Z, Wu LG (2019) Protein kinase C and calmodulin serve as calcium sensors for calcium-stimulated endocytosis at synapses. J Neurosci 39(48):9478–9490. https://doi.org/10.1523/JNEUROSCI.0182-19.2019

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Hohn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft R, Nieswandt B (2019) Loss of Orai2-mediated capacitative Ca(2+) entry is neuroprotective in acute ischemic stroke. Stroke 50 (11):3238–3245. doi:https://doi.org/10.1161/STROKEAHA.119.025357

  37. Zhang Y, Mao X, Lin R, Li Z, Lin J (2018) Electroacupuncture ameliorates cognitive impairment through inhibition of Ca(2+)-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury. Acupunct Med 36(6):401–407. https://doi.org/10.1136/acupmed-2016-011353

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu G, Dang C, Chen X, Xing S, Dani K, Xie C, Peng K, Zhang J et al (2015) Structural remodeling of white matter in the contralesional hemisphere is correlated with early motor recovery in patients with subcortical infarction. Restor Neurol Neurosci 33(3):309–319. https://doi.org/10.3233/RNN-140442

    Article  PubMed  Google Scholar 

  39. Askim T, Indredavik B, Vangberg T, Haberg A (2009) Motor network changes associated with successful motor skill relearning after acute ischemic stroke: a longitudinal functional magnetic resonance imaging study. Neurorehabil Neural Repair 23(3):295–304. https://doi.org/10.1177/1545968308322840

    Article  PubMed  Google Scholar 

  40. Kraft AW, Bauer AQ, Culver JP, Lee JM (2018) Sensory deprivation after focal ischemia in mice accelerates brain remapping and improves functional recovery through Arc-dependent synaptic plasticity. Sci Transl Med 10(426):eaag1328. https://doi.org/10.1126/scitranslmed.aag1328

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M (2008) Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke 39(9):2571–2577. https://doi.org/10.1161/STROKEAHA.107.511659

    Article  PubMed  PubMed Central  Google Scholar 

  42. Luo HY, Rahman M, Bobrovskaya L, Zhou XF (2019) The level of proBDNF in blood lymphocytes is correlated with that in the brain of rats with photothrombotic ischemic stroke. Neurotox Res 36(1):49–57. https://doi.org/10.1007/s12640-019-00022-0

    Article  CAS  PubMed  Google Scholar 

  43. Chen C, Chencheng Z, Cuiying L, Xiaokun G (2020) Plasmacytoid dendritic cells protect against middle cerebral artery occlusion induced brain injury by priming regulatory T cells. Front Cell Neurosci 14:8. https://doi.org/10.3389/fncel.2020.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun X, Zhang QW, Xu M, Guo JJ, Shen SW, Wang YQ, Sun FY (2012) New striatal neurons form projections to substantia nigra in adult rat brain after stroke. Neurobiol Dis 45(1):601–609. https://doi.org/10.1016/j.nbd.2011.09.018

    Article  PubMed  Google Scholar 

  45. Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH (2007) Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci 27(15):4101–4109. https://doi.org/10.1523/JNEUROSCI.4295-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen H, Wang J, Shen L, Wang H, Li W, Ding X (2020) Phosphatase and tensin homolog deletion enhances neurite outgrowth during neural stem cell differentiation. Neuropathology. 40:224–231. https://doi.org/10.1111/neup.12633

    Article  CAS  PubMed  Google Scholar 

  47. Ito M, Aswendt M, Lee AG, Ishizaka S, Cao Z, Wang EH, Levy SL, Smerin DL, McNab JA, Zeineh M, Leuze C, Goubran M, Cheng MY, Steinberg GK (2018) RNA-sequencing analysis revealed a distinct motor cortex transcriptome in spontaneously recovered mice after stroke. Stroke 49 (9):2191–2199. doi:https://doi.org/10.1161/STROKEAHA.118.021508

  48. Nesin SM, Sabitha KR, Gupta A, Laxmi TR (2019) Constraint induced movement therapy as a rehabilitative strategy for ischemic stroke-linking neural plasticity with restoration of skilled movements. J Stroke Cerebrovasc Dis 28(6):1640–1653. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.02.028

    Article  PubMed  Google Scholar 

  49. Ploughman M, Attwood Z, White N, Dore JJ, Corbett D (2007) Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. Eur J Neurosci 25(11):3453–3460. https://doi.org/10.1111/j.1460-9568.2007.05591.x

    Article  PubMed  Google Scholar 

  50. Barreda Tomas FJ, Turko P, Heilmann H, Trimbuch T, Yanagawa Y, Vida I, Munster-Wandowski A (2020) BDNF expression in cortical GABAergic interneurons. Int J Mol Sci 21(5). https://doi.org/10.3390/ijms21051567

  51. Luo L, Li C, Du X, Shi Q, Huang Q, Xu X, Wang Q (2019) Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav Brain Res 362:323–331. https://doi.org/10.1016/j.bbr.2018.11.037

    Article  CAS  PubMed  Google Scholar 

  52. Qiao H, An SC, Xu C, Ma XM (2017) Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 1663:29–37. https://doi.org/10.1016/j.brainres.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  53. Shih PC, Yang YR, Wang RY (2013) Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats. PLoS One 8(10):e78163. https://doi.org/10.1371/journal.pone.0078163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi IA, Lee CS, Kim HY, Choi DH, Lee J (2018) Effect of inhibition of DNA methylation combined with task-specific training on chronic stroke recovery. Int J Mol Sci 19(7). https://doi.org/10.3390/ijms19072019

  55. Li C, Wen H, Wang Q, Zhang C, Jiang L, Dou Z, Luo X, Zeng J (2015) Exercise training inhibits the Nogo-A/NgR1/Rho-A signals in the cortical peri-infarct area in hypertensive stroke rats. Am J Phys Med Rehabil 94(12):1083–1094. https://doi.org/10.1097/PHM.0000000000000339

    Article  PubMed  Google Scholar 

  56. Zhao S, Zhao M, Xiao T, Jolkkonen J, Zhao C (2013) Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke 44(6):1698–1705. https://doi.org/10.1161/STROKEAHA.111.000361

    Article  CAS  PubMed  Google Scholar 

  57. Merino P, Diaz A, Torre ER, Yepes M (2020) Urokinase-type plasminogen activator (uPA) regulates the expression and function of growth-associated protein 43 (GAP-43) in the synapse. J Biol Chem 295(2):619–630. https://doi.org/10.1074/jbc.RA119.010644

    Article  CAS  PubMed  Google Scholar 

  58. Mizutani K, Sonoda S, Wakita H, Katoh Y, Shimpo K (2014) Functional recovery and alterations in the expression and localization of protein kinase C following voluntary exercise in rat with cerebral infarction. Neurol Sci 35(1):53–59. https://doi.org/10.1007/s10072-013-1477-7

    Article  PubMed  Google Scholar 

  59. Mizutani K, Sonoda S, Yamada K, Beppu H, Shimpo K (2011) Alteration of protein expression profile following voluntary exercise in the perilesional cortex of rats with focal cerebral infarction. Brain Res 1416:61–68. https://doi.org/10.1016/j.brainres.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  60. Yepes M (2020) Urokinase-type plasminogen activator is a modulator of synaptic plasticity in the central nervous system: implications for neurorepair in the ischemic brain. Neural Regen Res 15(4):620–624. https://doi.org/10.4103/1673-5374.266904

    Article  PubMed  Google Scholar 

  61. Zheng HQ, Hu XQ, Fang J, Pan SQ, Li LL, Zhang LY (2012) Effects of exercise training on synaptic plasticity in rats with focal cerebral infarction. Zhonghua Yi Xue Za Zhi 92(9):628–633

    PubMed  Google Scholar 

  62. Qin L, Actor-Engel HS, Woo MS, Shakil F, Chen YW, Cho S, Aoki C (2019) An increase of excitatory-to-inhibitory synaptic balance in the contralateral cortico-striatal pathway underlies improved stroke recovery in BDNF Val66Met SNP mice. Neurorehabil Neural Repair 33(12):989–1002. https://doi.org/10.1177/1545968319872997

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu D, Cheng Z, Ali AI, Wang J, Le K, Chibaatar E, Guo Y (2019) Chronic unexpected mild stress destroys synaptic plasticity of neurons through a glutamate transporter, GLT-1, of astrocytes in the ischemic stroke rat. Neural Plast 2019:1615925–1615913. https://doi.org/10.1155/2019/1615925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Raefsky SM, Mattson MP (2017) Adaptive responses of neuronal mitochondria to bioenergetic challenges: roles in neuroplasticity and disease resistance. Free Radic Biol Med 102:203–216. https://doi.org/10.1016/j.freeradbiomed.2016.11.045

    Article  CAS  PubMed  Google Scholar 

  65. Clark TA, Sullender C, Jacob D, Zuo Y, Dunn AK, Jones TA (2019) Rehabilitative training interacts with ischemia-instigated spine dynamics to promote a lasting population of new synapses in peri-infarct motor cortex. J Neurosci 39(43):8471–8483. https://doi.org/10.1523/JNEUROSCI.1141-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Eyre MD, Richter-Levin G, Avital A, Stewart MG (2003) Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. Eur J Neurosci 17(9):1973–1980. https://doi.org/10.1046/j.1460-9568.2003.02624.x

    Article  PubMed  Google Scholar 

  67. Ding Y, Li J, Clark J, Diaz FG, Rafols JA (2003) Synaptic plasticity in thalamic nuclei enhanced by motor skill training in rat with transient middle cerebral artery occlusion. Neurol Res 25(2):189–194. https://doi.org/10.1179/016164103101201184

    Article  PubMed  Google Scholar 

  68. Nie J, Yang X, Tang Q, Shen Q, Li S (2016) Willed-movement training reduces brain damage and enhances synaptic plasticity related proteins synthesis after focal ischemia. Brain Res Bull 120:90–96. https://doi.org/10.1016/j.brainresbull.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  69. Schwenk J, Boudkkazi S, Kocylowski MK, Brechet A, Zolles G, Bus T, Costa K, Kollewe A, Jordan J, Bank J, Bildl W, Sprengel R, Kulik A, Roeper J, Schulte U, Fakler B (2019) An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. Neuron 104 (4):680–692 e689. doi:https://doi.org/10.1016/j.neuron.2019.08.033

  70. Tang Q, Yang Q, Hu Z, Liu B, Shuai J, Wang G, Liu Z, Xia J et al (2007) The effects of willed movement therapy on AMPA receptor properties for adult rat following focal cerebral ischemia. Behav Brain Res 181(2):254–261. https://doi.org/10.1016/j.bbr.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  71. Gao BY, Xu DS, Liu PL, Li C, Du L, Hua Y, Hu J, Hou JY et al (2020) Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regen Res 15(6):1045–1057. https://doi.org/10.4103/1673-5374.270312

    Article  PubMed  Google Scholar 

  72. Wang X, Zhang M, Yang SD, Li WB, Ren SQ, Zhang J, Zhang F (2014) Pre-ischemic treadmill training alleviates brain damage via GLT-1-mediated signal pathway after ischemic stroke in rats. Neuroscience 274:393–402. https://doi.org/10.1016/j.neuroscience.2014.05.053

    Article  CAS  PubMed  Google Scholar 

  73. Zhang A, Bai Y, Hu Y, Zhang F, Wu Y, Wang Y, Zheng P, He Q (2012) The effects of exercise intensity on p-NR2B expression in cerebral ischemic rats. Can J Neurol Sci 39(5):613–618. https://doi.org/10.1017/s0317167100015341

    Article  PubMed  Google Scholar 

  74. Luo L, Li C, Deng Y, Wang Y, Meng P, Wang Q (2019) High-intensity interval training on neuroplasticity, balance between brain-derived neurotrophic factor and precursor brain-derived neurotrophic factor in poststroke depression rats. J Stroke Cerebrovasc Dis 28(3):672–682. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.11.009

    Article  PubMed  Google Scholar 

  75. Ke Z, Hu S, Cui W, Sun J, Zhang S, Mak S, Wang J, Tang J et al (2019) Bis(propyl)-cognitin potentiates rehabilitation of treadmill exercise after a transient focal cerebral ischemia, possibly via inhibiting NMDA receptor and regulating VEGF expression. Neurochem Int 128:143–153. https://doi.org/10.1016/j.neuint.2019.04.016

    Article  CAS  PubMed  Google Scholar 

  76. Chen Z, Hu Q, Xie Q, Wu S, Pang Q, Liu M, Zhao Y, Tu F et al (2019) Effects of treadmill exercise on motor and cognitive function recovery of MCAO mice through the caveolin-1/VEGF signaling pathway in ischemic penumbra. Neurochem Res 44(4):930–946. https://doi.org/10.1007/s11064-019-02728-1

    Article  CAS  PubMed  Google Scholar 

  77. Pan R, Cai J, Zhan L, Guo Y, Huang RY, Li X, Zhou M, Xu D et al (2017) Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats. BMC Complement Altern Med 17(1):173. https://doi.org/10.1186/s12906-017-1680-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ploughman M, Granter-Button S, Chernenko G, Tucker BA, Mearow KM, Corbett D (2005) Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience 136(4):991–1001. https://doi.org/10.1016/j.neuroscience.2005.08.037

    Article  CAS  PubMed  Google Scholar 

  79. Ploughman M, Eskes GA, Kelly LP, Kirkland MC, Devasahayam AJ, Wallack EM, Abraha B, Hasan SMM et al (2019) Synergistic benefits of combined aerobic and cognitive training on fluid intelligence and the role of IGF-1 in chronic stroke. Neurorehabil Neural Repair 33(3):199–212. https://doi.org/10.1177/1545968319832605

    Article  PubMed  Google Scholar 

  80. Woost L, Bazin PL, Taubert M, Trampel R, Tardif CL, Garthe A, Kempermann G, Renner U et al (2018) Physical exercise and spatial training: a longitudinal study of effects on cognition, growth factors, and hippocampal plasticity. Sci Rep 8(1):4239. https://doi.org/10.1038/s41598-018-19993-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xie Q, Cheng J, Pan G, Wu S, Hu Q, Jiang H, Wang Y, Xiong J et al (2019) Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. Exp Neurol 313:60–78. https://doi.org/10.1016/j.expneurol.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  82. Seo HG, Kim DY, Park HW, Lee SU, Park SH (2010) Early motor balance and coordination training increased synaptophysin in subcortical regions of the ischemic rat brain. J Korean Med Sci 25(11):1638–1645. https://doi.org/10.3346/jkms.2010.25.11.1638

    Article  PubMed  PubMed Central  Google Scholar 

  83. Thiel G (1993) Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles. Brain Pathol 3(1):87–95. https://doi.org/10.1111/j.1750-3639.1993.tb00729.x

    Article  CAS  PubMed  Google Scholar 

  84. Pan X, Jiang T, Zhang L, Zheng H, Luo J, Hu X (2017) Physical exercise promotes novel object recognition memory in spontaneously hypertensive rats after ischemic stroke by promoting neural plasticity in the entorhinal cortex. Front Behav Neurosci 11:185. https://doi.org/10.3389/fnbeh.2017.00185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gherardini L, Gennaro M, Pizzorusso T (2015) Perilesional treatment with chondroitinase ABC and motor training promote functional recovery after stroke in rats. Cereb Cortex 25(1):202–212. https://doi.org/10.1093/cercor/bht217

    Article  PubMed  Google Scholar 

  86. Cramer JV, Gesierich B, Roth S, Dichgans M, During M, Liesz A (2019) In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease. Neuroimage 199:570–584. https://doi.org/10.1016/j.neuroimage.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  87. Spalletti C, Alia C, Lai S, Panarese A, Conti S, Micera S, Caleo M (2017) Combining robotic training and inactivation of the healthy hemisphere restores pre-stroke motor patterns in mice. Elife 6. https://doi.org/10.7554/eLife.28662

  88. Stewart JC, Dewanjee P, Tran G, Quinlan EB, Dodakian L, McKenzie A, See J, Cramer SC (2017) Role of corpus callosum integrity in arm function differs based on motor severity after stroke. Neuroimage Clin 14:641–647. https://doi.org/10.1016/j.nicl.2017.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  89. Carter AR, Patel KR, Astafiev SV, Snyder AZ, Rengachary J, Strube MJ, Pope A, Shimony JS et al (2012) Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair 26(1):7–19. https://doi.org/10.1177/1545968311411054

    Article  PubMed  Google Scholar 

  90. Bradnam LV, Stinear CM, Barber PA, Byblow WD (2012) Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex 22(11):2662–2671. https://doi.org/10.1093/cercor/bhr344

    Article  PubMed  Google Scholar 

  91. Peng Y, Liu J, Hua M, Liang M, Yu C (2019) Enhanced effective connectivity from ipsilesional to contralesional M1 in well-recovered subcortical stroke patients. Front Neurol 10:909. https://doi.org/10.3389/fneur.2019.00909

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hubbard IJ, Carey LM, Budd TW, Levi C, McElduff P, Hudson S, Bateman G, Parsons MW (2015) A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabil Neural Repair 29(8):703–713. https://doi.org/10.1177/1545968314562647

    Article  PubMed  Google Scholar 

  93. Zhang QW, Deng XX, Sun X, Xu JX, Sun FY (2013) Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke. PLoS One 8(11):e80139. https://doi.org/10.1371/journal.pone.0080139

    Article  PubMed  PubMed Central  Google Scholar 

  94. Okabe N, Himi N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Narita K, Hasegawa T, Miyamoto O (2018) Constraint-induced movement therapy improves efficacy of task-specific training after severe cortical stroke depending on the ipsilesional corticospinal projections. Exp Neurol 305:108–120. https://doi.org/10.1016/j.expneurol.2018.04.006

    Article  PubMed  Google Scholar 

  95. Zhang C, Wen H, Hu X, Li C, Zeng J (2014) Effects of physical training on pyramidal tract regeneration in hypertensive rats with focal cerebral infarction. Zhonghua Yi Xue Za Zhi 94(19):1488–1493

    PubMed  Google Scholar 

  96. Hou DR, Shadike S, Deng JF, Liu JF, Hu ZY, Zhou J, Zhou L, Liu YX (2011) Effect of willed movement therapy on the expression of neurotrophin 3 and growth-associated protein 43 in rats with cerebral ischemia reperfusion. Nan Fang Yi Ke Da Xue Xue Bao 31(8):1401–1404

    PubMed  Google Scholar 

  97. Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, Weiss S (2007) Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 27(5):983–997. https://doi.org/10.1038/sj.jcbfm.9600402

    Article  CAS  PubMed  Google Scholar 

  98. Tang Y, Zhang Y, Zheng M, Chen J, Chen H, Liu N (2018) Effects of treadmill exercise on cerebral angiogenesis and MT1-MMP expression after cerebral ischemia in rats. Brain Behav 8(8):e01079. https://doi.org/10.1002/brb3.1079

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ahn JH, Choi JH, Park JH, Kim IH, Cho JH, Lee JC, Koo HM, Hwangbo G et al (2016) Long-term exercise improves memory deficits via restoration of myelin and microvessel damage, and enhancement of neurogenesis in the aged gerbil hippocampus after ischemic stroke. Neurorehabil Neural Repair 30(9):894–905. https://doi.org/10.1177/1545968316638444

    Article  PubMed  Google Scholar 

  100. Komitova M, Zhao LR, Gido G, Johansson BB, Eriksson P (2005) Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur J Neurosci 21(9):2397–2405. https://doi.org/10.1111/j.1460-9568.2005.04072.x

    Article  PubMed  Google Scholar 

  101. Otsuka S, Sakakima H, Sumizono M, Takada S, Terashi T, Yoshida Y (2016) The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats. Behav Brain Res 303:9–18. https://doi.org/10.1016/j.bbr.2016.01.049

    Article  CAS  PubMed  Google Scholar 

  102. Winship IR, Murphy TH (2008) In vivo calcium imaging reveals functional rewiring of single somatosensory neurons after stroke. J Neurosci 28(26):6592–6606. https://doi.org/10.1523/JNEUROSCI.0622-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mizutani K, Sonoda S, Wakita H, Shimpo K (2015) Protein kinase C activator, bryostatin-1, promotes exercise-dependent functional recovery in rats with cerebral infarction. Am J Phys Med Rehabil 94(3):239–243. https://doi.org/10.1097/PHM.0000000000000227

    Article  PubMed  Google Scholar 

  104. Jones TA, Adkins DL (2015) Motor system reorganization after stroke: stimulating and training toward perfection. Physiology (Bethesda) 30(5):358–370. https://doi.org/10.1152/physiol.00014.2015

    Article  CAS  PubMed Central  Google Scholar 

  105. Okabe N, Shiromoto T, Himi N, Lu F, Maruyama-Nakamura E, Narita K, Iwachidou N, Yagita Y et al (2016) Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Neuroscience 339:338–362. https://doi.org/10.1016/j.neuroscience.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  106. Koganemaru S, Sawamoto N, Aso T, Sagara A, Ikkaku T, Shimada K, Kanematsu M, Takahashi R et al (2015) Task-specific brain reorganization in motor recovery induced by a hybrid-rehabilitation combining training with brain stimulation after stroke. Neurosci Res 92:29–38. https://doi.org/10.1016/j.neures.2014.10.004

    Article  PubMed  Google Scholar 

  107. Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, Stowe AM, Quaney BM et al (2003) Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 25(8):801–810. https://doi.org/10.1179/016164103771953880

    Article  PubMed  Google Scholar 

  108. Tennant KA, Kerr AL, Adkins DL, Donlan N, Thomas N, Kleim JA, Jones TA (2015) Age-dependent reorganization of peri-infarct “premotor” cortex with task-specific rehabilitative training in mice. Neurorehabil Neural Repair 29(2):193–202. https://doi.org/10.1177/1545968314541329

    Article  PubMed  Google Scholar 

  109. Liu P, Li C, Zhang B, Zhang Z, Gao B, Liu Y, Wang Y, Hua Y et al (2019) Constraint induced movement therapy promotes contralesional-oriented structural and bihemispheric functional neuroplasticity after stroke. Brain Res Bull 150:201–206. https://doi.org/10.1016/j.brainresbull.2019.06.003

    Article  PubMed  Google Scholar 

  110. Li YY, Zhang B, Yu KW, Li C, Xie HY, Bao WQ, Kong YY, Jiao FY et al (2018) Effects of constraint-induced movement therapy on brain glucose metabolism in a rat model of cerebral ischemia: a micro PET/CT study. Int J Neurosci 128(8):736–745. https://doi.org/10.1080/00207454.2017.1418343

    Article  CAS  PubMed  Google Scholar 

  111. Hu J, Li C, Hua Y, Zhang B, Gao BY, Liu PL, Sun LM, Lu RR et al (2019) Constrained-induced movement therapy promotes motor function recovery by enhancing the remodeling of ipsilesional corticospinal tract in rats after stroke. Brain Res 1708:27–35. https://doi.org/10.1016/j.brainres.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  112. Ishida A, Kobayashi K, Ueda Y, Shimizu T, Tajiri N, Isa T, Hida H (2019) Dynamic interaction between cortico-brainstem pathways during training-induced recovery in stroke model rats. J Neurosci 39(37):7306–7320. https://doi.org/10.1523/JNEUROSCI.0649-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang C, Zou Y, Li K, Li C, Jiang Y, Sun J, Sun R, Wen H (2018) Different effects of running wheel exercise and skilled reaching training on corticofugal tract plasticity in hypertensive rats with cortical infarctions. Behav Brain Res 336:166–172. https://doi.org/10.1016/j.bbr.2017.09.002

    Article  PubMed  Google Scholar 

  114. Kim H, Lee H, Jung KI, Ohn SH, Yoo WK (2018) Changes in diffusion metrics of the red nucleus in chronic stroke patients with severe corticospinal tract injury: a preliminary study. Ann Rehabil Med 42(3):396–405. https://doi.org/10.5535/arm.2018.42.3.396

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yagita Y, Kitagawa K, Sasaki T, Terasaki Y, Todo K, Omura-Matsuoka E, Matsumoto M, Hori M (2006) Postischemic exercise decreases neurogenesis in the adult rat dentate gyrus. Neurosci Lett 409(1):24–29. https://doi.org/10.1016/j.neulet.2006.09.040

    Article  CAS  PubMed  Google Scholar 

  116. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270. https://doi.org/10.1038/6368

    Article  PubMed  Google Scholar 

  117. Yong MS, Kim SG, Cheon SH (2017) Effects of skilled reach training with affected forelimb and treadmill exercise on the expression of neurotrophic factor following ischemia-induced brain injury in rats. J Phys Ther Sci 29(4):647–650. https://doi.org/10.1589/jpts.29.647

    Article  PubMed  PubMed Central  Google Scholar 

  118. Linder SM, Rosenfeldt AB, Davidson S, Zimmerman N, Penko A, Lee J, Clark C, Alberts JL (2019) Forced, not voluntary, aerobic exercise enhances motor recovery in persons with chronic stroke. Neurorehabil Neural Repair 33(8):681–690. https://doi.org/10.1177/1545968319862557

    Article  PubMed  PubMed Central  Google Scholar 

  119. Austin MW, Ploughman M, Glynn L, Corbett D (2014) Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 87:8–15. https://doi.org/10.1016/j.neures.2014.06.007

    Article  PubMed  Google Scholar 

  120. Nijland R, Kwakkel G, Bakers J, van Wegen E (2011) Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke: a systematic review. Int J Stroke 6(5):425–433. https://doi.org/10.1111/j.1747-4949.2011.00646.x

    Article  PubMed  Google Scholar 

  121. Omiyale O, Crowell CR, Madhavan S (2015) Effect of Wii-based balance training on corticomotor excitability post stroke. J Mot Behav 47(3):190–200. https://doi.org/10.1080/00222895.2014.971699

    Article  PubMed  Google Scholar 

  122. Lupo A, Cinnera AM, Pucello A, Iosa M, Coiro P, Personeni S, Gimigliano F, Iolascon G et al (2018) Effects on balance skills and patient compliance of biofeedback training with inertial measurement units and exergaming in subacute stroke: a pilot randomized controlled trial. Funct Neurol 33(3):131–136

    CAS  PubMed  Google Scholar 

  123. Ackerley SJ, Stinear CM, Byblow WD (2011) Promoting use-dependent plasticity with externally-paced training. Clin Neurophysiol 122(12):2462–2468. https://doi.org/10.1016/j.clinph.2011.05.011

    Article  PubMed  Google Scholar 

  124. Park SJ, Cho KH, Kim SH (2018) The effect of chest expansion exercise with TENS on gait ability and trunk control in chronic stroke patients. J Phys Ther Sci 30(5):697–699. https://doi.org/10.1589/jpts.30.697

    Article  PubMed  PubMed Central  Google Scholar 

  125. Stinear CM, Petoe MA, Anwar S, Barber PA, Byblow WD (2014) Bilateral priming accelerates recovery of upper limb function after stroke: a randomized controlled trial. Stroke 45(1):205–210. https://doi.org/10.1161/STROKEAHA.113.003537

    Article  PubMed  Google Scholar 

  126. Starosta M, Niwald M, Miller E (2015) The effectiveness of comprehensive rehabilitation after a first episode of ischemic stroke. Pol Merkur Lekarski 38(227):254–257

    PubMed  Google Scholar 

  127. Barrett N, Swain I, Gatzidis C, Mecheraoui C (2016) The use and effect of video game design theory in the creation of game-based systems for upper limb stroke rehabilitation. J Rehabil Assist Technol Eng 3:2055668316643644. https://doi.org/10.1177/2055668316643644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun Y, Ledwell NMH, Boyd LA, Zehr EP (2018) Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms. Exp Brain Res 236(7):2009–2021. https://doi.org/10.1007/s00221-018-5275-6

    Article  PubMed  Google Scholar 

  129. Nepveu JF, Thiel A, Tang A, Fung J, Lundbye-Jensen J, Boyd LA, Roig M (2017) A single bout of high-intensity interval training improves motor skill retention in individuals with stroke. Neurorehabil Neural Repair 31(8):726–735. https://doi.org/10.1177/1545968317718269

    Article  PubMed  Google Scholar 

  130. Rowe JB, Chan V, Ingemanson ML, Cramer SC, Wolbrecht ET, Reinkensmeyer DJ (2017) Robotic assistance for training finger movement using a Hebbian model: a randomized controlled trial. Neurorehabil Neural Repair 31(8):769–780. https://doi.org/10.1177/1545968317721975

    Article  PubMed  PubMed Central  Google Scholar 

  131. Oliveira DMG, Aguiar LT, de Oliveira Limones MV, Gomes AG, da Silva LC, de Morais Faria CDC, Scalzo PL (2019) Aerobic training efficacy in inflammation, neurotrophins, and function in chronic stroke persons: a randomized controlled trial protocol. J Stroke Cerebrovasc Dis 28(2):418–424. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.10.016

    Article  PubMed  Google Scholar 

  132. Pin-Barre C, Constans A, Brisswalter J, Pellegrino C, Laurin J (2017) Effects of high- versus moderate-intensity training on neuroplasticity and functional recovery after focal ischemia. Stroke 48(10):2855–2864. https://doi.org/10.1161/STROKEAHA.117.017962

    Article  PubMed  Google Scholar 

  133. Caimmi M, Chiavenna A, Scano A, Gasperini G, Giovanzana C, Molinari Tosatti L, Molteni F (2017) Using robot fully assisted functional movements in upper-limb rehabilitation of chronic stroke patients: preliminary results. Eur J Phys Rehabil Med 53(3):390–399. https://doi.org/10.23736/S1973-9087.16.04407-5

    Article  PubMed  Google Scholar 

  134. Hakim RM, Tunis BG, Ross MD (2017) Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders. Disabil Rehabil Assist Technol 12(8):765–771. https://doi.org/10.1080/17483107.2016.1269211

    Article  PubMed  Google Scholar 

  135. Lazaridou A, Astrakas L, Mintzopoulos D, Khanchiceh A, Singhal A, Moskowitz M, Rosen B, Tzika A (2013) fMRI as a molecular imaging procedure for the functional reorganization of motor systems in chronic stroke. Mol Med Rep 8(3):775–779. https://doi.org/10.3892/mmr.2013.1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81871841).

Author information

Authors and Affiliations

Authors

Contributions

Ying Xing prepared figures and drafted the manuscript; Ying Xing and Yulong Bai edited and revised the manuscript; Yulong Bai approved the final version of the manuscript.

Corresponding author

Correspondence to Yulong Bai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Bai, Y. A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol 57, 4218–4231 (2020). https://doi.org/10.1007/s12035-020-02021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02021-1

Keywords

Navigation