Skip to main content
Log in

Relaxed Highest-Weight Modules I: Rank 1 Cases

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Relaxed highest-weight modules play a central role in the study of many important vertex operator (super)algebras and their associated (logarithmic) conformal field theories, including the admissible-level affine models. Indeed, their structure and their (super)characters together form the crucial input data for the standard module formalism that describes the modular transformations and Grothendieck fusion rules of such theories. In this article, character formulae are proved for relaxed highest-weight modules over the simple admissible-level affine vertex operator superalgebras associated to \({\mathfrak{s}\mathfrak{l}_2}\) and \({\mathfrak{osp} (1 \vert 2)}\). Moreover, the structures of these modules are specified completely. This proves several conjectural statements in the literature for \({\mathfrak{s}\mathfrak{l}_2}\), at arbitrary admissible levels, and for \({\mathfrak{osp} (1 \vert 2)}\) at level \({-\frac{5}{4}}\). For other admissible levels, the \({\mathfrak{osp}(1 \vert 2)}\) results are believed to be new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feigin B., Semikhatov A., Tipunin I.Y.: Equivalence between chain categories of representations of affine \({sl (2)}\) and N = 2 superconformal algebras. J. Math. Phys. 39, 3865–3905 (1998) arXiv:hep-th/9701043

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Feigin B., Semikhatov A., Sirota V., Tipunin I.Y.: Resolutions and characters of irreducible representations of the N = 2 superconformal algebra. Nucl. Phys. B 536, 617–656 (1998) arXiv:hep-th/9805179

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Sato, R.: Equivalences between logarithmic weight modules via \({\mathcal{N}=2}\) coset constructions. arXiv:1605.02343 [math.RT]

  4. Sato, R.: Modular invariant representations over the \({\mathcal{N}=2}\) superconformal algebra. Int. Math. Res. Not. https://doi.org/10.1093/imrn/rny007. arXiv:1706.04882 [math.QA] (to appear)

  5. Creutzig, T., Liu, T., Ridout, D., Wood, S.: Non-unitary N = 2 minimal models (in preparation)

  6. Ridout D., Wood S.: Relaxed singular vectors, Jack symmetric functions and fractional level \({\widehat{\mathfrak{sl}}\left( 2 \right)}\) models. Nucl. Phys. B 894, 621–664 (2015) arXiv:1501.07318 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Adamović D., Milas A.: Vertex operator algebras associated to modular invariant representations of \({A_1^{\left(1\right)}}\). Math. Res. Lett. 2, 563–575 (1995) arXiv:q-alg/9509025

    Article  MATH  MathSciNet  Google Scholar 

  8. Maldacena J., Ooguri H.: Strings in AdS 3 and the \({\mathrm{SL} \left( 2, R \right)}\) WZW model. I: the spectrum. J. Math. Phys. 42, 2929–2960 (2001) arXiv:hep-th/0001053

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Gaberdiel M.: Fusion rules and logarithmic representations of a WZW model at fractional level. Nucl. Phys. B 618, 407–436 (2001) arXiv:hep-th/0105046

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Ridout D.: \({\widehat{\mathfrak{sl}} \left( 2 \right)_{-1/2}}\) and the triplet model. Nucl. Phys. B 835, 314–342 (2010) arXiv:1001.3960 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Ridout D.: Fusion in fractional level \({\widehat{\mathfrak{sl}} \left( 2 \right)}\)-theories with \({k=-\tfrac{1}{2}}\). Nucl. Phys. B 848, 216–250 (2011) arXiv:1012.2905 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Creutzig T., Ridout D., Wood S.: Coset constructions of logarithmic \({\left( 1,p \right)}\)-models. Lett. Math. Phys. 104, 553–583 (2014) arXiv:1305.2665 [math.QA]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Adamović D.: A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra \({A_2^{(1)}}\). Transform Groups 21, 299–327 (2016) arXiv:1407.1527 [math.QA]

    Article  MATH  MathSciNet  Google Scholar 

  14. Arakawa T., Futorny V., Ramirez L.-E.: Weight representations of admissible affine vertex algebras. Commun. Math. Phys. 353, 1151–1178 (2017) arXiv:1605.07580 [math.RT]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Creutzig T., Ridout D.: Logarithmic conformal field theory: beyond an introduction. J. Phys. A 46, 494006 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ridout D., Wood S.: The Verlinde formula in logarithmic CFT. J. Phys. Conf. Ser. 597, 012065 (2015) arXiv:1409.0670 [hep-th]

    Article  Google Scholar 

  18. Creutzig T., Ridout D.: Relating the archetypes of logarithmic conformal field theory. Nucl. Phys. B 872, 348–391 (2013) arXiv:1409.0670 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Creutzig, T., Ridout, D.: W-algebras extending \({\widehat{\mathfrak{gl}} \left( 1 \vert 1 \right)}\). Proc. Math. Stat. 36, 349–368 (2011). arXiv:1111.5049 [hep-th]

  20. Verlinde E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988)

    Article  ADS  MATH  Google Scholar 

  21. Huang Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008) arXiv:math.QA/0406291

    Article  MATH  MathSciNet  Google Scholar 

  22. Creutzig T., Ridout D.: Modular data and Verlinde formulae for fractional level WZW models I. Nucl. Phys. B 865, 83–114 (2012) arXiv:1205.6513 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Creutzig T., Ridout D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013) arXiv:1306.4388 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Ridout D., Snadden J., Wood S.: An admissible level \({\widehat{\mathfrak{osp}} \left( 1 \vert 2 \right)}\)-model: modular transformations and the Verlinde formula. Lett. Math. Phys. 108, 2363–2423 (2018) arXiv:1705.04006 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Creutzig, T., Kanade, S., Liu, T., Ridout, D.: Cosets, characters and fusion for admissible-level \({\mathfrak{osp}\left( 1 \vert 2 \right)}\) minimal models. Nucl. Phys. B 938, 22–55 (2018). arXiv:1806.09146 [hep-th]

  26. Ridout D., Wood S.: Bosonic ghosts at c = 2 as a logarithmic CFT. Lett. Math. Phys. 105, 279–307 (2015) arXiv:1408.4185 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Semikhatov, A., Sirota, V.: Embedding diagrams of N = 2 Verma modules and relaxed \({\widehat{sl}\left( 2 \right)}\) Verma modules. arXiv:hep-th/9712102

  28. Adamović, D.: Realizations of simple affine vertex algebras and their modules: the cases \({\widehat{sl(2)}}\) and \({\widehat{osp(1,2)}}\). arXiv:1711.11342 [math.QA]

  29. Semikhatov, A.: Inverting the Hamiltonian reduction in string theory. In: 28th International Symposium on Particle Theory, Wendisch-Rietz, Germany, pp. 156–167 (1994). arXiv:hep-th9410109

  30. Adamović D.: Lie superalgebras and irreducibility of \({A_1^{(1)}}\)-modules at the critical level. Commun. Math. Phys. 270, 141–161 (2007) arXiv:math.QA/0602181

    Article  ADS  MATH  Google Scholar 

  31. Kac V., Wakimoto M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, 4956–4960 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Kac V., Wakimoto M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70, 156–236 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mathieu O.: Classification of irreducible weight modules. Ann. Inst. Fourier (Grenoble) 50, 537–592 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mazorchuk V.: Lectures on \({\mathfrak{sl}_2 (\mathbb{C})}\)-Modules. Imperial College Press, London (2010)

  35. Iohara K., Koga Y.: Fusion algebras for N = 1 superconformal field theories through coinvariants I: \({\widehat{osp} \left(1\vert2\right)}\)-symmetry. J. Reine Angew. Math. 531, 1–34 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Arnaudon D., Bauer M., Frappat L.: On Casimir’s ghost. Commun. Math. Phys. 187, 429–439 (1997) arXiv:q-alg/9605021

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Ridout D.: \({\widehat{\mathfrak{sl}} \left( 2 \right)_{-1/2}}\) : a case study. Nucl. Phys. B 814, 485–521 (2009) arXiv:0810.3532 [hep-th]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Wood, S.: Admissible level \({\mathfrak{osp} \left( 1 \vert 2\right)}\) minimal models and their relaxed highest weight modules arXiv:1804.01200 [math.QA]

Download references

Acknowledgements

We thank Dražen Adamović, Tomoyuki Arakawa, Thomas Creutzig, Tianshu Liu, and SimonWood for useful discussions aswell as their encouragement.We also thankWill Stewart for pointing out a small error in a previous version and Ryo Sato for clarifying for us the relation between hiswork and relaxed \({\widehat{\mathfrak{sl}}_2}\) characters. KK’s research is supported by the Australian Research Council Discovery Project DP160101520. DR’s research is supported by the Australian Research Council Discovery Project DP160101520 and the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers CE140100049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Kawasetsu.

Additional information

Communicated by C. Schweigert

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasetsu, K., Ridout, D. Relaxed Highest-Weight Modules I: Rank 1 Cases. Commun. Math. Phys. 368, 627–663 (2019). https://doi.org/10.1007/s00220-019-03305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03305-x

Navigation