Skip to main content
Log in

Weight Representations of Admissible Affine Vertex Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For an admissible affine vertex algebra \({V_k{(\mathfrak{g})}}\) of type A, we describe a new family of relaxed highest weight representations of \({V_k{(\mathfrak{g})}}\). They are simple quotients of representations of the affine Kac–Moody algebra \({\widehat{\mathfrak{g}}}\) induced from the following \({\mathfrak{g}}\)-modules: (1) generic Gelfand–Tsetlin modules in the principal nilpotent orbit, in particular all such modules induced from \({\mathfrak{sl}_2}\); (2) all Gelfand–Tsetlin modules in the principal nilpotent orbit that are induced from \({\mathfrak{sl}_3}\); (3) all simple Gelfand–Tsetlin modules over \({\mathfrak{sl}_3}\). This in particular gives the classification of all simple positive energy weight representations of \({V_k{(\mathfrak{g})}}\) with finite dimensional weight spaces for \({\mathfrak{g}=\mathfrak{sl}_3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamović D.: A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra \({A_1^{(1)}}\). Transform. Groups 21(2), 299–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamović D., Milas A.: Vertex operator algebras associated to modular invariant representations for \({A_{1}^{(1)}}\). Math. Res. Lett. 2(5), 563–575 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arakawa T.: Two-sided BGG resolution of admissible representations. Represent. Theory 18(3), 183–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arakawa T.: Associated varieties of modules over Kac–Moody algebras and \({C_2}\)-cofiniteness of W-algebras. Int. Math. Res. Not. 2015, 11605–11666 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Arakawa T.: Rationality of W-algebras: principal nilpotent cases. Ann. Math. 182(2), 565–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arakawa T.: Rationality of admissible affine vertex algebras in the category \({\mathcal{O}}\). Duke Math. J. 165(1), 67–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Creutzig T., Ridout D.: Modular data and Verlinde formulae for fractional level WZW models I. Nucl. Phys. B 865(1), 83–114 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Creutzig T., Ridout D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875(2), 423–458 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Deodhar V.: On a construction of representations and a problem of Enright. Invent. Math. 57, 101–118 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dimitrov I., Mathieu O., Penkov I.: On the structure of weight modules. Trans. Am. Math. Soc. 352, 2857–2869 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drozd Y., Ovsienko S., Futorny V.: Irreducible weighted \({\mathfrak{sl}(3)}\)-modules. Funksionalnyi Analiz i Ego Prilozheniya 23, 57–58 (1989)

    MathSciNet  Google Scholar 

  12. Drozd Y., Futorny V., Ovsienko S.: Gelfand–Tsetlin modules over Lie algebra \({\mathfrak{sl}(3)}\). Contemp. Math. 131, 23–29 (1992)

    Article  MATH  Google Scholar 

  13. Drozd, Y., Futorny, V., Ovsienko, S.: Harish–Chandra subalgebras and Gelfand–Zetlin modules, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, pp. 79–93 (1994)

  14. Duflo M.: Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple. Ann. Math. 105(1), 107–120 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feigin B.L., Semikhatov A.M., Yu I.: Tipunin, Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras. J. Math. Phys. 39, 3865–3905 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Fernando S.: Lie algebra modules with finite dimensional weight spaces I. Trans. Am. Math. Soc. 322, 757–781 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Futorny V., Ovsienko S.: Galois orders in skew monoid rings. J. Algebra 324, 598–630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Futorny V., Ovsienko S.: Fibers of characters in Gelfand–Tsetlin categories. Trans. Am. Math. Soc. 366, 4173–4208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves, vol. 88 of Mathematical Surveys and Monographs, 2nd ed. American Mathematical Society, Providence, RI (2004)

  20. Frenkel E., Kac V., Wakimoto M.: Characters and fusion rules for W-algebras via quantized Drinfel’ d-Sokolov reduction. Commun. Math. Phys. 147(2), 295–328 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Futorny V., Grantcharov D., Ramirez L.E.: Irreducible generic Gelfand–Tsetlin modules of \({\mathfrak{gl}(n)}\). SIGMA 11(018), 13 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Futorny V., Grantcharov D., Ramirez L.E.: Singular Gelfand–Tsetlin modules for \({\mathfrak{gl}(n)}\). Adv. Math. 290, 453–482 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Futorny, V., Grantcharov, D., Ramirez, L.E.: Classification of irreducible Gelfand–Tsetlin modules for \({\mathfrak{sl}(3)}\). (in progress)

  24. Gelfand, I., Tsetlin, M.: Finite-dimensional representations of groups of orthogonal matrices. Doklady Akad. Nauk SSSR 71, 1017–1020 (1950) (Russian)

  25. Graev M.: Infinite-dimensional representations of the Lie algebra \({gl(n, \mathbb{C})}\) related to complex analogs of the Gelfand–Tsetlin patterns and general hupergeometric functions on the Lie group \({gl(n, \mathbb{C})}\). Acta Appl.Math. 81, 93–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jantzen J. C.: Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren. Math. Ann. 226(1), 53–65 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Joseph A.: On the associated variety of a primitive ideal. J. Algebra 93(2), 509–523 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Joseph A.: Dixmier’s problem for Verma and principal series submodules. J. Lond. Math. Soc. 20(2), 193–204 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kac, V.: Vertex algebras for beginners, vol. 10 of University Lecture Series, 2nd edn. American Mathematical Society, Providence, RI (1998)

  30. Kac, V. G., Wakimoto, M.: Classification of modular invariant representations of affine algebras. In: Infinite-dimensional Lie algebras and groups (Luminy–Marseille, 1988), volume 7 of Adv. Ser. Math. Phys., pp. 138–177. World Sci. Publ., Teaneck, NJ (1989)

  31. Kac V., Wakimoto M.: On rationality of W-algebras. Transform. Groups 13(3–4), 671–713 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Khomenko, O.: Some applications of Gelfand–Zetlin modules. Representations of algebras and related topics, Fields Inst. Commun., vol. 45, Am. Math. Soc., Providence, RI, pp. 205–213 (2005)

  33. Kostant, B., Wallach, N.: Gelfand–Zeitlin theory from the perspective of classical mechanics I. In: Studies in Lie Theory Dedicated to A. Joseph on his Sixtieth Birthday, Progress in Mathematics, vol. 243, pp. 319–364 (2006)

  34. Kostant B., Wallach N.: Gelfand–Zeitlin theory from the perspective of classical mechanics II. In The Unity of Mathematics In Honor of the Ninetieth Birthday of I. M. Gelfand, Progress in Mathematics 244, 387–420 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Mathieu O.: Classification of irreducible weight modules. Ann. Inst. Fourier 50(2), 537–592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ridout, D.: \({\widehat{{\mathfrak{sl} }}(2)_{-1/2}}\): a case study. Nucl. Phys. B 814(3), 485–521 (2009)

  37. Ridout, D.: \({\widehat{{\mathfrak{sl} }}(2)_{-1/2}}\) and the triplet model. Nucl. Phys. B 835(3), 314–342 (2010)

  38. Wang W.: Dimension of a minimal nilpotent orbit. Proc. Am. Math. Soc. 127(3), 935–936 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhelobenko, D.: Compact Lie groups and their representations. Transl. Math. Monographs, AMS, 40 (1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Arakawa.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakawa, T., Futorny, V. & Ramirez, L.E. Weight Representations of Admissible Affine Vertex Algebras. Commun. Math. Phys. 353, 1151–1178 (2017). https://doi.org/10.1007/s00220-017-2872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2872-3

Navigation