Skip to main content
Log in

Back to Baxterisation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the continuity of our previous paper (Crampe et al. in Commun Math Phys 349:271, 2017, arXiv:1509.05516), we define three new algebras, \({\mathcal{A}_{\mathfrak{n}}(a,b,c)}\), \({\mathcal{B}_{\mathfrak{n}}}\) and \({\mathcal{C}_{\mathfrak{n}}}\), that are close to the braid algebra. They allow to build solutions to the Yang-Baxter equation with spectral parameters. The construction is based on a baxterisation procedure, similar to the one used in the context of Hecke or BMW algebras. The \({\mathcal{A}_{\mathfrak{n}}(a,b,c)}\) algebra depends on three arbitrary parameters, and when the parameter a is set to zero, we recover the algebra \({\mathcal{M}_{\mathfrak{n}}(b,c)}\) already introduced elsewhere for purpose of baxterisation. The Hecke algebra (and its baxterisation) can be recovered from a coset of the \({\mathcal{A}_{\mathfrak{n}}(0,0,c)}\) algebra. The algebra \({\mathcal{A}_{\mathfrak{n}}(0,b,-b^2)}\) is a coset of the braid algebra. The two other algebras \({\mathcal{B}_{\mathfrak{n}}}\) and \({\mathcal{C}_{\mathfrak{n}}}\) do not possess any parameter, and can be also viewed as a coset of the braid algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, V.F.R.: Baxterisation, Int. J. Mod. Phys. B 4, 701 (1990). In: Proceedings of “Yang-Baxter equations, conformal invariance and integrability in statistical mechanics and field theory”, Canberra (1989)

  2. Isaev, A.P.: Quantum groups and Yang-Baxter equations, Max-Planck Institut für Mathematik (2004)

  3. Jimbo M.: A q-difference analogue of U(gl(n + 1)), Hecke algebra and the Yang-Baxter equation. Lett. Math. Phys. 11, 247 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cheng Y., Ge M.L., Xue K.: Yang-Baxterization of braid group representations. Commun. Math. Phys. 136, 195 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Zhang R.B., Gould M.D., Bracken A.J.: From representations of the braid group to solutions of the Yang-Baxter equation. Nucl. Phys. B 354, 625 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Li Y.-Q.: Yang Baxterization. J. Math. Phys. 34, 757 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Boukraa S., Maillard J.M.: Let’s Baxterise. J. Stat. Phys. 102, 641 (2001) arXiv:hep-th/0003212

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Arnaudon D., Chakrabarti A., Dobrev V.K., Mihov S.G.: Spectral decomposition and baxterisation of exotic bialgebras and associated noncommutative geometries. Int. J. Mod. Phys. A 18, 4201 (2003)

    Article  ADS  MATH  Google Scholar 

  9. Kulish P.P., Manojlović N., Nagy Z.: Symmetries of spin systems and Birman–Wenzl–Murakami algebra. J. Math. Phys. 51, 043516 (2010) arXiv:0910.4036

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fonseca T., Frappat L., Ragoucy E.: R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz. J. Math. Phys. 56, 013503 (2015) arXiv:1406.3197

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Crampe N., Frappat L., RagoucyE Vanicat M.: A new braid-like algebra for baxterisation. Commun. Math. Phys. 349, 271 (2017) arXiv:1509.05516

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Vanicat, M.: Approche intégrabiliste des modèles de physique statistique hors d’équilibre. Section II.B.2.c, PhD thesis (in english) arXiv:1708.02440

  13. Crampe N., Frappat L., Ragoucy E., Vanicat M.: 3-state Hamiltonians associated to solvable 33-vertex models. J. Math. Phys. 57, 093504 (2016) arXiv:1509.07589

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Isaev A.P., Ogievetsky O.V.: Baxterized solutions of reflection equation and integrable chain models. Nucl. Phys. B 760, 167 (2007) arXiv:math-ph/0510078

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vanicat.

Additional information

Communicated by C. Schweigert

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crampe, N., Ragoucy, E. & Vanicat, M. Back to Baxterisation. Commun. Math. Phys. 365, 1079–1090 (2019). https://doi.org/10.1007/s00220-019-03299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03299-6

Navigation