Skip to main content
Log in

A New Braid-like Algebra for Baxterisation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a new Baxterisation for R-matrices that depend separately on two spectral parameters. The Baxterisation is based on a new algebra, close to but different from the braid group. We study representations of this new algebra on the vector space \({(\mathbb{C}^m)^{\otimes n}}\), when the generators act locally. The ones for \({m=2}\) are completely classified. We also introduce some representations for generic m: they allow us to recover the R-matrix of the multi-species generalization of the totally asymmetric simple exclusion process with different hopping rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulish P.P., Reshetikhin N.Y., Sklyanin E.K.: Yang–Baxter equation and representation theory: I. Lett. Math. Phys. 5, 393 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Kulish P.P., Sklyanin E.K.: Solutions of the Yang–Baxter equation. J. Sov. Math. 19, 1596 (1982)

    Article  MATH  Google Scholar 

  3. Jimbo M.: Quantum R matrix for the generalized Toda system. Commun. Math. Phys. 102, 537 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Jones, V.F.R.: Baxterisation. Int. J. Mod. Phys. B 4, 701 (1990), proceedings of “Yang–Baxter equations, conformal invariance and integrability in statistical mechanics and field theory”, Canberra (1989)

  5. Jimbo M.: A q-difference analogue of \({U(gl(n+1))}\), Hecke algebra and the Yang–Baxter equation. Lett. Math. Phys. 11, 247 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Isaev, A.P.: Quantum groups and Yang–Baxter equations. Max–Planck Institut für Mathematik (2004). Max-Planck Institute preprint MPI 04-132

  7. Cheng Y., Ge M.L., Xue K.: Yang–Baxterization of braid group representations. Commun. Math. Phys. 136, 195 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Zhang R.B., Gould M.D., Bracken A.J.: From representations of the braid group to solutions of the Yang–Baxter equation. Nucl. Phys. B 354, 625 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Li Y.-Q.: Yang Baxterization. J. Math. Phys. 34, 757 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Boukraa, S., Maillard, J.M.: Let’s Baxterise. J. Stat. Phys. 102, 641 (2001). arXiv:hep-th/0003212

  11. Arnaudon D., Chakrabarti A., Dobrev V.K., Mihov S.G.: Spectral decomposition and Baxterisation of exotic bialgebras and associated noncommutative geometries. Int. J. Mod. Phys. A 18, 4201 (2003)

    Article  ADS  MATH  Google Scholar 

  12. Kulish, P.P., Manojlović, N., Nagy, Z.: Symmetries of spin systems and Birman–Wenzl–Murakami algebra. J. Math. Phys. 51, 043516 (2010). arXiv:0910.4036 [nlin.SI]

  13. Fonseca T., Frappat L., Ragoucy E.: R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz. J. Math. Phys 56, 013503 (2015). arXiv:1406.3197

  14. Drinfel’d V.G.: Quasi-Hopf algebras. Leningrad Math. J. 1, 1419 (1990)

    MATH  MathSciNet  Google Scholar 

  15. Drinfel’d V.G.: Structure of quasitriangular quasi-Hopf algebras. Funct. Anal. Appl. 26, 63 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sklyanin E.K., Takhtadzhyan L.A., Faddeev L.D.: Quantum inverse problem method. I. Theor. Math. Phys 40, 688 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hietarinta J.: Solving the two-dimensional constant quantum Yang–Baxter equation. J. Math. Phys. 34, 1725 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Cantini, L.: Algebraic Bethe Ansatz for the two species ASEP with different hopping rates. J. Phys. A 41, 095001 (2008). arXiv:0710.4083

  19. Jones V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Derrida B., Evans M., Hakim V., Pasquier V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493 (1993)

    Article  ADS  MATH  Google Scholar 

  21. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix product form: a Solver’s guide. J. Phys. A 40, R333 (2007). arXiv:0706.1678

  22. Sasamoto T., Wadati M.: Stationary state of integrable systems in matrix product form. J. Phys. Soc. Japan 66, 2618 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Crampe, N., Ragoucy E., Vanicat, M.: Integrable approach to simple exclusion processes with boundaries. Review and Progress. J. Stat. Mech. P11032 (2014). arXiv:1408.5357

  24. Arita, C., Mallick, K.: Matrix product solution to an inhomogeneous multi-species TASEP. J. Phys. A 46, 085002 (2013). arXiv:1209.1913

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Crampe.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crampe, N., Frappat, L., Ragoucy, E. et al. A New Braid-like Algebra for Baxterisation. Commun. Math. Phys. 349, 271–283 (2017). https://doi.org/10.1007/s00220-016-2780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2780-y

Navigation