Skip to main content
Log in

Spectral Stability of Inviscid Roll Waves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We carry out a systematic analytical and numerical study of spectral stability of discontinuous roll wave solutions of the inviscid Saint-Venant equations, based on a periodic Evans–Lopatinsky determinant analogous to the periodic Evans function of Gardner in the (smooth) viscous case, obtaining a complete spectral stability diagram useful in hydraulic engineering and related applications. In particular, we obtain an explicit low-frequency stability boundary, which, moreover, matches closely with its (numerically-determined) counterpart in the viscous case. This is seen to be related to but not implied by the associated formal first-order Whitham modulation equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abd-el Malek M.B.: Approximate solution of gravity-affected flow from planar sluice gate at high Froude number. J. Comput. Appl. Math. 35(1), 83–97 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexander J., Gardner R., Jones C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Azevedo, A., Marchesin, D., Plohr, B.J., Zumbrun, K.: Long-lasting diffusive solutions for systems of conservation laws. In: VI Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 1999) Mat. Contemporary, vol. 18, pp. 1–29 (2000)

  4. Balmforth N.J., Mandre S.: Dynamics of roll waves. J. Fluid Mech. 514, 1–33 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bar D.E., Nepomnyashchy A.A.: Stability of periodic waves governed by the modified Kawahara equation. Phys. D 86(4), 586–602 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barker B.: Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow. J. Differ. Equ. 257(8), 2950–2983 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Barker B., Johnson M.A., Noble P., Rodrigues L.M., Zumbrun K.: Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation. Phys. D 258, 11–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barker B., Johnson M.A., Noble P., Rodrigues L.M., Zumbrun K.: Stability of viscous St. Venant roll waves: from onset to infinite Froude number limit. J. Nonlinear Sci. 27(1), 285–342 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Barker B., Johnson M.A., Rodrigues L.M., Zumbrun K.: Metastability of solitary roll wave solutions of the St Venant equations with viscosity. Phys. D 240(16), 1289–1310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benzoni-Gavage S., Mietka C., Rodrigues L.M.: Co-periodic stability of periodic waves in some Hamiltonian PDEs. Nonlinearity 29(11), 3241–3308 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Benzoni-Gavage S., Noble P., Rodrigues L.M.: Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids. J. Nonlinear Sci. 24(4), 711–768 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Benzoni-Gavage S., Serre D.: Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications Oxford Mathematical Monographs. . The Clarendon Press, Oxford (2007)

    MATH  Google Scholar 

  13. Boudlal A., Liapidevskii V.Y.: Stability of roll waves in open channel flows. Comptes Rendus Méc 330(4), 291–295 (2002)

    Article  ADS  MATH  Google Scholar 

  14. Brock R.R.: Development of roll-wave trains in open channels. J. Hydraul. Div. 95(4), 1401–1428 (1969)

    Google Scholar 

  15. Brock R.R.: Periodic permanent roll waves. J. Hydraul. Div. 96(12), 2565–2580 (1970)

    Google Scholar 

  16. Coddington E.A.: An Introduction to Ordinary Differential Equations Prentice-Hall Mathematics Series. Prentice-Hall Inc., Englewood Cliffs (1961)

    Google Scholar 

  17. Cornish V.: Ocean Waves and Kindred Geophysical Phenomena. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  18. Dressler R.F.: Mathematical solution of the problem of roll-waves in inclined open channels. Commun. Pure Appl. Math. 2, 149–194 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  19. Erpenbeck J.J.: Stability of step shocks. Phys. Fluids 5(5), 604–614 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Francheteau, J., Métivier, G.: Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Astérisque 268, viii+198 (2000). (in French)

  21. Freeze B., Smolentsev S., Morley N., Abdou M.A.: Characterization of the effect of Froude number on surface waves and heat transfer in inclined turbulent open channel water flows. Int. J. Heat Mass Transf. 46(20), 3765–3775 (2003)

    Article  Google Scholar 

  22. Gardner R.A.: On the structure of the spectra of periodic travelling waves. J. Math. Pures Appl. (9) 72(5), 415–439 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Härterich, J.M.: Existence of rollwaves in a viscous shallow water equation. In: EQUADIFF 2003, pp. 511–516. World Scientific Publishing, Hackensack (2005)

  24. Huang, Z.: Open Channel Flow Instabilities: Modeling the Spatial Evolution of Roll Waves. Ph.D. thesis, University of Southern California (2013)

  25. Jeffreys H.: The flow of water in an inclined channel of rectangular section. Philos. Mag. 49(293), 793–807 (1925)

    Article  MATH  Google Scholar 

  26. Jenssen H.K., Lyng G., Williams M.: Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion. Indiana Univ. Math. J. 54(1), 1–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin S., Katsoulakis M.A.: Hyperbolic systems with supercharacteristic relaxations and roll waves. SIAM J. Appl. Math. 61(1), 273–292 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnson M.A., Noble P., Rodrigues L.M., Zumbrun K.: Nonlocalized modulation of periodic reaction diffusion waves: theWhitham equation. Arch. Ration. Mech. Anal. 207(2), 669–692 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Johnson M.A., Noble P., Rodrigues L.M., Zumbrun K.: Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations. Invent. Math. 197(1), 115–213 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Johnson M.A., Noble P., Rodrigues L.M., Zumbrun K.: Spectral stability of periodic wave trains of the Korteweg–de Vries/Kuramoto–Sivashinsky equation in the Korteweg–de Vries limit. Trans. Am. Math. Soc. 367(3), 2159–2212 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kabil B., Rodrigues L.M.: Spectral validation of the Whitham equations for periodic waves of lattice dynamical systems. J. Differ. Equ. 260(3), 2994–3028 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kranenburg C.: On the evolution of roll waves. J. Fluid Mech. 245, 249–261 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lafitte O., Williams M., Zumbrun K.: The Erpenbeck high frequency instability theorem for Zeldovitch–von Neumann–Döring detonations. Arch. Ration. Mech. Anal. 204(1), 141–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lax P.D.: Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  35. Majda A.: The existence and stability of multidimensional shock fronts. Bull. Am. Math. Soc. (N.S.) 4(3), 342–344 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Majda, A.: The existence of multidimensional shock fronts. Mem. Am. Math. Soc. 43(281), v+93 (1983)

  37. Majda, A.: The stability of multidimensional shock fronts. Mem. Am. Math. Soc. 41(275), iv+95 (1983)

  38. Needham D.J., Merkin J.H.: On roll waves down an open inclined channel. Proc. R. Soc. Lond. Ser. A 394(1807), 259–278 (1984)

    Article  ADS  MATH  Google Scholar 

  39. Noble, P.:Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discrets. Ph.D. thesis, Université Paul Sabatier Toulouse 3 (2003). (in French)

  40. Noble P.: On the spectral stability of roll-waves. Indiana Univ. Math. J. 55(2), 795–848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Noble, P.: Persistence of roll waves for the Saint Venant equations. SIAM J. Math. Anal., 40(5), 1783–1814 (2008/2009)

  42. Noble P., Rodrigues L.M.: Whitham’s modulation equations and stability of periodic wave solutions of the Korteweg–de Vries–Kuramoto–Sivashinsky equation. Indiana Univ. Math. J. 62(3), 753–783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oh M., Zumbrun K.: Stability of periodic solutions of conservation laws with viscosity: analysis of the Evans function. Arch. Ration. Mech. Anal. 166(2), 99–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Richard G.L., Gavrilyuk S.L.: A new model of roll waves: comparison with brocks experiments. J. Fluid Mech. 698, 374–405 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Richard G.L., Gavrilyuk S.L.: A new model of roll waves: comparison with brocks experiments. J. Fluid Mech. 725, 492–521 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. Rodrigues, L.M.: Asymptotic Stability and Modulation of Periodic Wavetrains. General Theory and Applications to Thin Film Flows. Habilitation à diriger des recherches, Université Lyon 1 (2013)

  47. Rodrigues L.M.: Space-modulated stability and averaged dynamics. Journées Équations Aux dérivées Partielles 6, 1–15 (2015)

    Article  Google Scholar 

  48. Rodrigues L.M.: Linear asymptotic stability and modulation behavior near periodic waves of the Korteweg–de Vries equation. J. Funct. Anal. 274(9), 2553–2605 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rodrigues L.M., Zumbrun K.: Periodic-coefficient damping estimates, and stability of large amplitude roll waves in inclined thin film flow. SIAM J. Math. Anal. 48(1), 268–280 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Serre D.: Systems of Conservation Laws. 1: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge (1999) (Translated from the 1996 French original by I. N. Sneddon)

    Book  MATH  Google Scholar 

  51. Serre D.: Spectral stability of periodic solutions of viscous conservation laws: large wave length analysis. Commun. Partial Differ. Equ. 30(1–3), 259–282 (2005)

    Article  MATH  Google Scholar 

  52. Smoller J.: Shock Waves and Reaction–Diffusion Equations, Volume 258 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer, New York (1983)

    Google Scholar 

  53. Tamada K., Tougou H.: Stability of roll-waves on thin laminar flow down an inclined plane wall. J. Phys. Soc. Jpn. 47(6), 1992–1998 (1979)

    Article  ADS  Google Scholar 

  54. Tougou H.: Stability of turbulent roll-waves in an inclined open channel. J. Phys. Soc. Jpn. 48(3), 1018–1023 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Whitham G.B.: Linear and Nonlinear Waves Pure and Applied Mathematics. Wiley, New York (1974)

    MATH  Google Scholar 

  56. Yu J., Kevorkian J.: Nonlinear evolution of small disturbances into roll waves in an inclined open channel. J. Fluid Mech. 243, 575–594 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Yu J., Kevorkian J., Haberman R.: Weak nonlinear long waves in channel flow with internal dissipation. Stud. Appl. Math. 105(2), 143–163 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves, Volume 47 of Progress in Nonlinear Differential Equations Application, pp. 307–516. Birkhäuser, Boston (2001)

  59. Zumbrun K.: Stability of detonation profiles in the ZND limit. Arch. Ration. Mech. Anal. 200(1), 141–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zumbrun K.: High-frequency asymptotics and one-dimensional stability of Zel’dovich–von Neumann–Döring detonations in the small-heat release and high-overdrive limits. Arch. Ration. Mech. Anal. 203(3), 701–717 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to Olivier Lafitte for stimulating discussions regarding normal forms for singular ODE, and to Blake Barker for his generous help in sharing source computations from [BJN+17]. The numerical computations in this paperwere carried out in the MATLAB environment; analytical calculations were checked with the aid of MATLAB’s symbolic processor. Thanks to University Information Technology Services (UITS) division from Indiana University for providing the Karst supercomputer environment in which most of our computations were carried out. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew A. Johnson.

Additional information

Communicated by W. Schlag

Research of M.J. was partially supported under NSF Grant No. DMS-1614785. Research of P.N. was partially supported by the French ANR Project BoND ANR-13-BS01-0009-01. Research of M.R.was partially supported by the French ANR Project BoND ANR-13-BS01-0009-01 and the city of Rennes. Research of Z.Y. was partially supported by the Hazel King Thompson Summer Reading Fellowship. Research of K.Z. was partially supported under NSF Grant No. DMS-1400555 and DMS-1700279.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, M.A., Noble, P., Rodrigues, L.M. et al. Spectral Stability of Inviscid Roll Waves. Commun. Math. Phys. 367, 265–316 (2019). https://doi.org/10.1007/s00220-018-3277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3277-7

Navigation