Skip to main content
Log in

Diffusive Stability of Spatially Periodic Solutions of the Brusselator Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Applying the Lyapunov–Schmidt reduction approach introduced by Mielke and Schneider in their analysis of the fourth-order scalar Swift–Hohenberg equation, we carry out a rigorous small-amplitude stability analysis of Turing patterns for the canonical second-order system of reaction–diffusion equations given by the Brusselator model. Our results confirm that stability is accurately predicted in the small-amplitude limit by the formal Ginzburg–Landau amplitude equations, rigorously validating the standard weakly unstable approximation and the Eckhaus criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: The dynamics of modulated wavetrains. Mem. Am. Math. Soc. 199(934) (2009), viii+105 pp. ISBN: 978-0-8218-4293-5

  2. Callahan T.K., Knobloch E.: Pattern formation in three-dimensional reaction–diffusion systems. Physica D 132, 339–362 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cross, M.: Notes on the turing instability and chemical instabilities. Unpublished Lecture Notes, http://www.cmp.caltech.edu/~mcc/BNU/Notes7_2.pdf

  4. Collet, P., Eckmann, J.-P.: Instabilities and fronts in extended systems. Princeton Series in Physics (1990)

  5. Kagei Y., von Wahl W.: The Eckhaus criterion for convection roll solutions of the Oberbeck–Boussinesq equations. Int. J. Non-linear Mech. 32(3), 563–620 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chossat, P., Lauterbach, R.: Methods in equivariant bifurcations and dynamical systems. In: Advanced Series in Nonlinear Dynamics. World Scientific (2000)

  7. Eckhaus, W.: Studies in nonlinear stability theory. In: Springer Tracts in Natural Philosophy, vol. 6 (1965)

  8. Gambino G., Lombardo M.C., Sammartino M., Sciacca V.: Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E. 88(4), 042925 (2013)

    Article  ADS  Google Scholar 

  9. Golubitsky, M., Schaeffer, D.: Singularities and groups in Bifurcation theory, Volume I. In: Applied Mathematical Sciences 51. Springer-Verlag, New York (1985)

  10. Johnson M., Noble P., Rodrigues L.M., Zumbrun K.: Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability. Arch. Ration. Mech. Anal. 207(2), 693–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Johnson M., Noble P., Rodrigues L.M., Zumbrun K.: Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation. Arch. Ration. Mech. Anal. 207(2), 669–692 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson M., Zumbrun K.: Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction–diffusion equations. Ann. Inst. H. Poincar Non-linear Anal. 28(4), 471–483 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kato T.: Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1985)

    Google Scholar 

  14. Kuramoto, Y.: Chemical oscillations, waves, and turbulence. In: Springer Series in Synergetics, 19. Springer-Verlag, Berlin (1984)

  15. Kirchgässner, K., Sorger, P.: Stability analysis of branching solutions of the Navier–Stokes equations. In: H’etenyi, M., Vincenti, G. (eds) Proceedings of the 12th Congress of Applied Mechanics (Stanford 1968), pp. 257–268. Springer Verlag (1969)

  16. Mielke, A.: A new approach to sideband-instabilities using the principle of reduced instability, nonlinear dynamics and pattern formation in the natural environment (Noordwijkerhout, 1994). Pitman Research Notes in Mathematics Series 335, pp. 206–222. Longman, Harlow (1995)

  17. Mielke A.: Instability and stability of rolls in the Swift–Hohenberg equation. Commun. Math. Phys. 189(3), 829–853 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mielke, A.: The Ginzburg–Landau equation in its role as a modulation equation. In: Handbook of Dynamical Systems, Vol. 2, pp. 759–834. North-Holland, Amsterdam (2002)

  19. Newell A.C., Passot T., Lega J.: Order parameter equations for patterns. Ann. Rev. Fluid Mech. 25, 399–453 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Newell A.C., Whitehead J.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 39, 279–303 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Peña B., Prez-Garc-a C.: Stability of Turing patterns in the Brusselator model. Phys. Rev. E 64(5), 056213 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pogan A., Yao J., Zumbrun K.: O(2) Hopf bifurcation of viscous shock waves in a channel. Physica D 308, 59–79 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Prigogene I., Lefever R.: Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys. 48, 1665–1700 (1968)

    Article  ADS  Google Scholar 

  24. Sandstede B., Scheel A., Schneider G., Uecker H.: Diffusive mixing of periodic wave trains in reaction–diffusion systems. J. Differ. Equ. 252(5), 3541–3574 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Schneider G.: Diffusive stability of spatial periodic solutions of the Swift–Hohenberg equation. Commun. Math. Phys. 178, 679–202 (1996)

  26. Schneider, G.: Nonlinear diffusive stability of spatially periodic solutions—abstract theorem and higher space dimensions. In: Proceedings of the International Conference on Asymptotics in Nonlinear Diffusive Systems (Sendai, 1997), pp. 159–167. Tohoku Mathematical Publications 8, Tohoku University, Sendai (1998)

  27. Sukhtayev, A., Zumbrun, K., Jung, S., Venkatraman, R.: Diffusive stability of spatially periodic solutions of the Brusselator model. Expanded preprint, http://arxiv.org/abs/1608.08476

  28. Tuckerman L.S., Barkley D.: Bifurcation analysis of the Eckhaus instability. Physica D 46, 57–86 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Turing A.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Zumbrun.

Additional information

Communicated by W. Schlag

Research of K.Z. was partially supported under NSF Grants Nos. DMS-0300487 and DMS-0801745. Research of S.J. was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1C1B1009978). Research of R.V. was partially supported under NSF Grants Nos. DMS-1101290 and DMS-1362879.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhtayev, A., Zumbrun, K., Jung, S. et al. Diffusive Stability of Spatially Periodic Solutions of the Brusselator Model. Commun. Math. Phys. 358, 1–43 (2018). https://doi.org/10.1007/s00220-017-3056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3056-x

Navigation