Skip to main content
Log in

Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Finite-gap (algebro-geometric) solutions to the focusing Nonlinear Schrödinger Equation (fNLS)

$$i \psi_t + \psi_{xx} + 2|\psi|^2\psi=0,$$
(0-1)

are quasi-periodic solutions that represent nonlinear multi-phase waves. In general, a finite-gap solution for (0-1) is defined by a collection of Schwarz symmetrical spectral bands and of real constants (initial phases), associated with the corresponding bands. In this paper we prove an interesting new formula for the maximal amplitude of a finite-gap solution to the focusing Nonlinear Schrödinger equation with given spectral bands: the amplitude does not exceed the sum of the imaginary parts of all the endpoints in the upper half plane. In the case of the straight vertical bands, that amounts to the half of the sum of the length of all the bands. The maximal amplitude will be attained for certain choices of the initial phases. This result is an important part of a criterion for the potential presence of the rogue waves in finite-gap solutions with a given set of spectral endpoints, obtained in Bertola et al. (Proc R Soc A, 2016. doi:10.1098/rspa.2016.0340). A similar result was also obtained for the defocusing Nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev N., Ankiewicz A., Soto-Crespo J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  ADS  MATH  Google Scholar 

  2. Belokolos E.D., Bobenko A.I., Enol’skii V.Z., Its A.R., Matveev V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  3. Bertola, M., Tovbis, A.: Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquee solution to Painleve I. Commun. Pure Appl. Math. 66(5), 678752 (2013)

  4. Bertola, M., Katsevich, A., Tovbis, A.: Singular value decomposition of a finite Hilbert transform defined on several intervals and the interior problem of tomography: the Riemann–Hilbert problem approach. Commun. Pure Appl. Math. (2014). doi:10.1002/cpa.21547

  5. Bertola, M., El, G., Tovbis, A.: Rogue waves in multiphase solutions of the focusing NLS equation. Proc. R. Soc. A (2016). doi:10.1098/rspa.2016.0340

  6. Deift, P., Its, A., Zhou, X.: A Riemann–Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Ann. Math. 146(1), 149–235 (1997)

  7. Deift P., Venakides S., Zhou X.: The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun. Pure Appl. Math. 47, 199–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deift P., Venakides S., Zhou X.: New results in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems. Int. Math. Res. Not. 6, 286–299 (1997)

    Article  MathSciNet  Google Scholar 

  9. Dubard P., Matveev V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation. Nonlinearity 26(12), R93 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dubrovin B., Grava T., Klein C.: On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation. J. Nonlinear Sci. 19, 57–94 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dysthe K.B., Trulsen K.: Note on breather type solutions of the NLS as models for freak-waves. Phys. Scr. T82, 48–52 (1999)

    Article  ADS  Google Scholar 

  12. Farkas H.M., Kra I.: Riemann Surfaces. Springer, New York (1991)

    MATH  Google Scholar 

  13. Fay J.D.: Theta functions on Riemann surfaces. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  14. Flaschka H., Forest M.G., McLauchlin D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation. Commun. Pure Appl. Math. 33, 739–784 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. He J.S., Zhang H.R., Wang L.H., Porsezian K., Fokas A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  ADS  Google Scholar 

  16. Grimshaw R.H.J., Tovbis A.: Rogue waves: analytical predictions. Proc. R. Soc. A 469, 20130094 (2013)

    Article  ADS  Google Scholar 

  17. Its A.R., Kotlyarov V.P.: Explicit formulas for solutions of the Schrödinger nonlinear equation. Doklady Akad. Nauk Ukrainian SSR Ser. A 10, 965–968 (1976)

    MATH  Google Scholar 

  18. Its A.R., Rybin A.V., Sail’ M.A.: Exact Integration of nonlinear Schrödinger equation. Translated from Teoreticheskaya i Matematicheskaya Fizika 74(i), 29–45 (1988)

    Google Scholar 

  19. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue waves in the ocean. Advances in Geophysical and Environmental Mechanics and Mathematics, vol. 14. Springer, Berlin (2009)

  20. Kibler B. et al.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Article  Google Scholar 

  21. Kibler B. et al.: Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012)

    Article  Google Scholar 

  22. Kamvissis S., McLaughlin K.D.T.-R., Miller P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Volume 154 of Annals of Mathematics Studies. Princeton University Press, Princeton (2003)

    Book  Google Scholar 

  23. Korotkin D.: Solution of matrix Riemann–Hilbert problems with quasi-permutation monodromy matrices. Math. Ann. 329(2), 335–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Novikov S., Manakov S.V., Pitaevskii L.P., Zakharov V.E.: Theory of Solitons: The Inverse Scattering Method (Monographs in Contemporary Mathematics). Springer, Berlin (1984)

    MATH  Google Scholar 

  25. Onorato M., Osborne A. et al.: Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 5831 (2001)

    Article  ADS  Google Scholar 

  26. Onorato M., Residori S., Bortolozzo U., Montina A., Arecchi F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Osborne A.R.: Nonlinear ocean waves and the inverse scattering transform. Elsevier, Amsterdam (2010)

    MATH  Google Scholar 

  28. Randoux, S., Suret, P., El, G.: Identification of rogue waves from scattering transform analysis of periodized waveforms. Sci. Rep. 6, Article number 29238 (2016). doi:10.1038/srep29238

  29. Shabat, A.B.: One-dimensional perturbations of a differential operator and the inverse scattering problem. Probelms in Mechanics and Mathematical Physics, pp. 279–296. Nauka, Moscow (1976)

  30. Shrira V.I., Geogjaev V.V.: What makes the Peregrine soliton so special as a prototype of freak waves?. J. Eng. Math. 67, 11–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Solli D.R., Ropers C., Koonath P., Jalali B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  32. Tovbis A., Venakides S., Zhou X.: On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrödinger equation. Commun. Pure Appl. Math. 57(7), 877–985 (2004)

    Article  MATH  Google Scholar 

  33. Tovbis A., Venakides S., Zhou X.: On long time behavior of semiclassical (zero dispersion) limit of the focusing nonlinear Schroedinger equation: pure radiaton case. Commun. Pure Appl. Math. 59, 1379–1432 (2006)

    Article  MATH  Google Scholar 

  34. Umemura, H.: Resolution of algebraic equations by theta constants. In: Mumford, D.(ed.) in Tata Lectures on Theta II, Birkhauser, Boston (1984)

  35. Walczak P., Randoux S., Suret P.: Optical rogue waves in integrable turbulence. Phys. Rev. Lett. 114, 143903 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wright, O.: Effective integration of ultra-elliptic solutions of the focusing nonlinear Schrödinger equation. Phys. D 321–322, 16–38 (2016)

  37. Zhou X.: The Riemann–Hilbert problem and inverse scattering. SIAM J. Math Anal. 20, 966–986 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tovbis.

Additional information

Communicated by P. Deift

Work supported in part by the Natural Sciences and Engineering Research Council of Canada Grant RGPIN-2016-06660.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertola, M., Tovbis, A. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation. Commun. Math. Phys. 354, 525–547 (2017). https://doi.org/10.1007/s00220-017-2895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2895-9

Navigation