Skip to main content
Log in

Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

In this paper we solve an arbitrary matrix Riemann-Hilbert (inverse monodromy) problem with irreducible quasi-permutation monodromy representation outside of a divisor in the space of monodromy data. This divisor is characterized in terms of the theta-divisor on the Jacobi manifold of an auxiliary compact Riemann surface realized as an appropriate branched covering of P1 . The solution is given in terms of a generalization of Szegö kernel on the Riemann surface. In particular, our construction provides a new class of solutions of the Schlesinger system. The isomonodromy tau-function of these solutions is computed up to a nowhere vanishing factor independent of the elements of monodromy matrices. Results of this work generalize the results of papers [13] and [14] where the 2× 2 case was solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babich, M., Korotkin, D.: Self-dual SU(2)-invariant Einstein manifolds and modular dependence of theta-functions. Lett.Math.Phys. 46, 323–337 (1998)

    Article  MATH  Google Scholar 

  2. Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Phys.Lett. 168B, 201–206 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolibruch, A.: The Riemann-Hilbert problem. Russ. Math. Surveys 45, 1–58 (1990)

    Google Scholar 

  4. Deift, P., Its, A., Kapaev, A., Zhou, X.: On the algebro-geometric integration of the Schlesinger equations. Commun. Math. Phys. 203, 613–633 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deift, P., Its, A., Zhou, X.: A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics. Annals of Math. 146, 149–235 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Dubrovin, B.: Geometry of 2D topological field theories.0 In: Integrable systems and quantum groups. Lecture Notes in Math., v.1620, Springer, Berlin, 1996, pp. 120–348

  7. Fay, J.: Theta Functions on Riemann Surfaces. Lect.Notes in Math., 352, Springer, Berlin, 1973

  8. Fay, J.: Kernel functions, Analytic torsion and Moduli spaces. Mem. Am. Math. Soc., 96(464), 1–123 (1992)

    Google Scholar 

  9. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience (1978)

  10. Grinevich P., Orlov A.: Flag Spaces in KP theory and Virasoro action on \(\det D_j\) and Segal-Wilson τ-function, in Research reports in physics. Problems of modern quantum field theory, p. 86-106, ed. by Belavin, A.A., Klimuk, A.U., Zamolodchikov, A.B., Springer Berlin, Heidelberg, 1989

  11. Hitchin, N.: Twistor spaces, Einstein metrics and isomonodromic deformations, J. Diff. Geom. 42, 30–112 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. Physica 2D, 306–352 (1981)

    Article  MathSciNet  Google Scholar 

  13. Kitaev, A., Korotkin, D.: On solutions of Schlesinger equations in terms of theta-functions. Intern. Math. Res. Not. 17, 877–905 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klein, C., Richter, O.: Explicit solutions of Riemann-Hilbert problem for the Ernst equation. Phys.Rev.D 57, 857–862 (1998)

    Article  MathSciNet  Google Scholar 

  15. Knizhnik, V.G.: Multiloop amplitudes in the theory of quantum strings and complex geometry. Sov. Phys. Uspekhi. 32, 945–971 (1989)

    MathSciNet  Google Scholar 

  16. Kokotov, A., Korotkin, D.: Tau-functions on Hurwitz spaces. Math. Phys. Anal. Geo. To be published; archive math-ph/0202034

  17. Kokotov, A., Korotkin, D.: On G-function of Frobenius manifolds associated to Hurwitz spaces. Int. Math. Res. Not. 2004, 343–360 (2004)

    Article  Google Scholar 

  18. Korotkin, D.: Finite-gap solutions of stationary axially symmetric Einstein equations in vacuum. Theor.Math.Phys. 77, 1018–1031 (1989)

    Google Scholar 

  19. Korotkin, D.: Isomonodromic deformations and Hurwitz spaces. In Isomonodromic deformations and applications in Physics, ed. by Harnad, J. and Its, A., CRM Proceeding and Lecture Notes, Am. Math. Soc., 2001

  20. Malgrange, B.: Sur les Déformation Isomonodromiques. In Mathématique et Physique (E.N.S. Séminaire 1979-1982) Birkhäuser, Boston, 1983, pp. 401–426

  21. Neugebauer, G., Meinel, R.: General relativistic gravitational field of the rigidly rotating disk of dust: Solution in terms of ultraelliptic functions. Phys.Rev.Lett. 75, 3046–3048 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Quillen, D.: Determinants of Cauchy-Riemann operators over Riemann surface. Funct.Anal.Appl. 19(1), 37–41 (1984)

    MATH  Google Scholar 

  23. Serre, J.-P.: Revêtements à ramification impaire et thêta-caractéristiques. C. R. Acad Sci. Paris, Serie I, 311, 547–552 (1990)

    Google Scholar 

  24. Takhtajan, L.: Semi-classical Liouville theory, complex geometry of moduli spaces, and uniformization of Riemann surfaces. In: New Symmetry Principles in Quantum Field Theory, ed. by Frölich, J., et al, Plenum Press, New York, 1992

  25. Umemura, H.: Second proof of irreducebility of the first differential equation of painlevé, Nagoya Math. J. 117, 125–171 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Watanabe, H.: Birational canonical transformations and classical solutions of the sixth Painlevé equation. Ann. Scuola Norm. Sup. Pisa Cl.Sci., 27, 379–425 (1999)

    Google Scholar 

  27. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevskii, L.P.: Theory of Solitons. The inverse scattering method, Consultants Bureau, New York, 1984

  28. Zamolodchikov, Al.B.: Conformal scalar field on the hyperelliptic curve and critical Ashkin-Teller multipoint correlation functions. Nucl.Phys. B285, 481–503 (1986)

    Google Scholar 

  29. Zverovich, E.I.: Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces. Russ. Math. Surveys 26 117–192 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Korotkin.

Additional information

Mathematics Subject Classification (1991): 35Q15, 30F60, 32G81

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotkin, D. Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices. Math. Ann. 329, 335–364 (2004). https://doi.org/10.1007/s00208-004-0528-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-004-0528-z

Keywords

Navigation