Skip to main content
Log in

On Rationality of W-algebras

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study the problem of classification of triples (\( \mathfrak{g} \); f; k), where g is a simple Lie algebra, f its nilpotent element and k\( \mathbb{C} \), for which the simple W-algebra W k (\( \mathfrak{g} \); f) is rational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Adamović, A. Milas, Vertex operator algebras associated to modular invariant representations for A (1) 1, q-alg/9509025.

  2. T. Arakawa, Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture, Duke Math. J. 130 (2005), 435–478.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Arakawa, Representation theory of W-algebras, Invent. Math. 169 (2007), 219–320.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. A. Belavin, A. M. Polyakov, A. M. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B241 (1984), 333–380.

    Article  MathSciNet  Google Scholar 

  5. J. Brundan, A. Kleshchev, Representations of shifted Yangians and finite W-algebras, math.RT/0508003.

  6. D. Collingwood, W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostand Reinhold, New York, 1993.

    MATH  Google Scholar 

  7. A. De Sole, V. G. Kac, Finite vs affine W-algebras, Japan. J. Math. 1 (2006), 137–261.

    Article  Google Scholar 

  8. C. Dong, H. Li, G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), 571–600.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. de Vos, P. van Dreil, The Kazhdan-Lusztig conjecture for finite W-algebras, Lett. Math. Phys. 35 (1995), 333–344.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. G. Elashvili, V. G. Kac, Classification of good gradings of simple Lie algebras, in: Amer. Math. Soc. Transl. Ser. 2, Vol. 213, Amer. Math. Soc., Providence, RI, 2005, pp. 85–104.

  11. E. Frenkel, V. G. Kac, M. Wakimoto, Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction, Comm. Math. Phys. 147 (1992), 295–328.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Frenkel, Y. Zhu, Vertex algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123–168.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Gan, V. Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255.

    Article  MathSciNet  Google Scholar 

  14. M. Gorelik, V. G. Kac, On simplicity of vacuum modules, Adv. Math. 211 (2007), 621–677.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Gorelik, V. G. Kac, Characters of highest weight modules over affine Lie algebras are meromorphic functions, Int. Math. Res. Not. (2007), no. 20, Art. ID rnm079, 25 pp., arXiv:0704.2876

  16. V. G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. Russian transl.: В. Кац, Бесконечномерные алгебры Ли, Мир, М., 1993.

  17. V. G. Kac, Vertex Algebras for Beginners, 2nd ed., University Lecture Notes, Vol. 10, American Mathematical Society, Providence, RI, 1996. Russian transl.: В. Г. Кац, Вертексные алгебры для начинающих, МЦНМО, М., 2005.

  18. V. G. Kac, S.-S. Roan, M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003), 307–342.

    MATH  MathSciNet  Google Scholar 

  19. V. G. Kac, M. Wakimoto, Classification of modular invariant representations of affine algebras, in: Infinite-Dimensional Lie Algebras and Groups, Advanced series in Mathematical Physics, Vol. 7, World Scientific, River Edge, NJ, 1989, pp. 138–177.

  20. V. G. Kac, M. Wakimoto, Branching functions for winding subalgebras and tensor products, Acta Appl. Math. 21 (1990), 3–39.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. G. Kac, M. Wakimoto, Quantum reduction and representation theory of super-conformal algebras, Adv. Math. 185 (2004), 400–458. Corrigendum, Adv. Math. 193 (2005), 453–455.

    Article  MATH  MathSciNet  Google Scholar 

  22. V. G. Kac, M. Wakimoto, Quantum reduction in the twisted case, in: Progress in Mathematics, Vol. 237, Birkhäuser, Boston, 2005, pp. 85–126.

  23. H. Kraft, Parametrisierung der Konjugationclassen in sn, Math. Ann. 234 (1978), 209–220.

    Article  MathSciNet  Google Scholar 

  24. H. Matumoto, Whittaker modules associated with highest weight modules, Duke Math. J. 60 (1990), 59–113.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1–55.

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237–302.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor G. Kac.

Additional information

Dedicated to Bertram Kostant on the occasion of his 80th birthday

Supported in part by NSF grant DMS-0501395.

Supported in part by Department of Mathematics MIT, Clay Mathematical Institute, grant-in-aid for scientific research A-14204003, and the twenty-first century COE program at RIMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kac, V.G., Wakimoto, M. On Rationality of W-algebras. Transformation Groups 13, 671–713 (2008). https://doi.org/10.1007/s00031-008-9028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-008-9028-7

Keywords

Navigation