Skip to main content
Log in

Dropping the Independence: Singular Values for Products of Two Coupled Random Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the singular values of the product of two coupled rectangular random matrices as a determinantal point process. Each of the two factors is given by a parameter dependent linear combination of two independent, complex Gaussian random matrices, which is equivalent to a coupling of the two factors via an Itzykson-Zuber term. We prove that the squared singular values of such a product form a biorthogonal ensemble and establish its exact solvability. The parameter dependence allows us to interpolate between the singular value statistics of the Laguerre ensemble and that of the product of two independent complex Ginibre ensembles which are both known. We give exact formulae for the correlation kernel in terms of a complex double contour integral, suitable for the subsequent asymptotic analysis. In particular, we derive a Christoffel–Darboux type formula for the correlation kernel, based on a five term recurrence relation for our biorthogonal functions. It enables us to find its scaling limit at the origin representing a hard edge. The resulting limiting kernel coincides with the universal Meijer G-kernel found by several authors in different ensembles. We show that the central limit theorem holds for the linear statistics of the singular values and give the limiting variance explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, G., Baik, J., Di Francesco, P. (eds.): The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)

  2. Akemann G., Burda Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A Math. Theor. 45, 465201 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Akemann G., Ipsen J.R.: Recent exact and asymptotic results for products of independent random matrices. Acta Physica Polonica B 46(9), 1747–1784 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Akemann G., Ipsen J., Kieburg M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013)

    Article  ADS  Google Scholar 

  5. Akemann G., Ipsen J.R., Strahov E.: Permanental processes from products of complex and quaternionic induced Ginibre ensembles. Random Matrices Theory Appl. 3(4), 1450014 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Akemann G., Kieburg M., Wei L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A 46, 275205 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Akemann G., Strahov E.: Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. J. Stat. Phys. 151, 987–1003 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Alexeev N., Götze F., Tikhomirov A.: Asymptotic distribution of singular values of powers of random matrices. Lith. Math. J. 50(2), 121–132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Anderson G.W., Guionnet A., Zeitouni O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  10. Balantekin A.B.: Character expansions, Itzykson–Zuber integrals, and the QCD partition function. Phys. Rev. D 62, 085017 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bertola M., Gekhtman M., Szmigielski J.: Cauchy–Laguerre two-matrix model and the Meijer-G random point field. Commun. Math. Phys. 326(1), 111–144 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Bertola M., Bothner T.: Universality conjecture and results for a model of several coupled positive-definite matrices. Commun. Math. Phys. 337(3), 1077–1141 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Borodin A.: Biorthogonal ensembles. Nuclear Phys. B 536(3), 704–732 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Breuer, J., Duits, M.: Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. arXiv:1309.6224v2, accepted for publication in JAMS, see http://www.ams.org/cgi-bin/mstrack/acceptedpapers/jams

  15. Brower R., Rossi P., Tan C.-I.: The external field problem for QCD. Nuclear Phys. B 190 [FS3](4), 699–718 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  16. Burda Z., Janik R.A., Waclaw B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81(4), 041132 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Crisanti A., Paladin G., Vulpiani A.: Products of Random Matrices. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  18. Deift, P.A.: Integrable Operators. In: Buslaev, V., Solomyak, M., Yafaev, D. (eds.) Differential operators and spectral theory: M. Sh. Birman’s 70th anniversary collection. American Mathematical Society Translations, Vol. 2, p. 189, Providence, RI (1999)

  19. Fischmann J., Bruzda W., Khoruzhenko B.A., Sommers H.-J., Zyczkowski K.: Induced Ginibre ensemble of random matrices and quantum operations. J. Phys. A 45(7), 075203 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Forrester P.J.: Log-gases and Random Matrices. London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ (2010)

    Google Scholar 

  21. Forrester P.J.: Eigenvalue statistics for product complex Wishart matrices. J. Phys. A 47(34), 345202 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Forrester P.J., Kieburg M.: Relating the Bures measure to the Cauchy two-matrix model. Commun. Math. Phys. 342(1), 151–187 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Forrester, P. J., Liu, D.-Z.: Singular values for products of complex Ginibre matrices with a source: hard edge limit and phase transition. Commun. Math. Phys. 344(1), 333–368 (2015). doi:10.1007/s00220-015-2507-5

  24. Forrester, P.J., Wang, D.: Muttalib–Borodin ensembles in random matrix theory: realisations and correlation functions. arXiv:1502.07147 [math-ph]

  25. Furstenberg, F., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960) doi: 10.1007/s00220-015-2507-5

  26. Götze F., Kösters H., Tikhomirov A.: Asymptotic spectra of matrix-valued functions of independent random matrices and free probability. Random Matrices Theory Appl. 4, 1550005 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  27. Götze, F., Naumov, A., Tikhomirov, A.: Distribution of linear statistics of singular values of the product of random matrices. arXiv:1412.3314

  28. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. In: Jeffrey, A., Zwillinger, D. (eds.) 5th edn. Academic Press, New York (1994)

  29. Haagerup U., Thorbjørnsen S.: Random matrices with complex Gaussian entries. Exposition. Math. 21(4), 293–337 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math. 79(1), 87–120 (1957)

  31. Ipsen J.R., Kieburg M.: Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Phys. Rev. E 89, 032106 (2014)

    Article  ADS  Google Scholar 

  32. Its A.R., Isergin A.G., Korepin V.E., Slavnov N.A.: Differential equations for quantum correlation functions. Int. J. Mod. Phys. B 4, 1003–1037 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Itzykson C., Zuber J.B.: The planar approximation. II. J. Math. Phys. 21, 411 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Kanazawa T., Wettig T., Yamamoto N.: Singular values of the Dirac operator in dense QCD-like theories. JHEP 12, 007 (2011)

    Article  ADS  MATH  Google Scholar 

  35. Kanazawa T., Wettig T.: Stressed Cooper pairing in QCD at high isospin density: effective Lagrangian and random matrix theory. JHEP 10, 055 (2014)

    Article  ADS  Google Scholar 

  36. Kuijlaars, A.B.J.: Transformations of polynomial ensembles. arXiv:1501.05506 [math.PR]

  37. Kuijlaars A.B.J., Stivigny D.: Singular values of products of random matrices and polynomial ensembles. Random Matrices Theory Appl. 03, 1450011 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kuijlaars A.B.J., Zhang L.: Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits. Commun. Math. Phys. 332, 759–781 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Leutwyler H., Smilga A.: Spectrum of Dirac operator and role of winding number in QCD. Phys. Rev. D 46, 5607 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  40. Liu, D.-Z., Wang, D., Zhang, L.: Bulk and soft-edge universality for singular values of products of Ginibre random matrices. arXiv:1412.6777v2, to appear in Annales de l’IHP Probabilités et statistiques

  41. Luke Y.L.: The Special Functions and Their Approximations. Academic Press, New York (1969)

    MATH  Google Scholar 

  42. Müller R.R.: On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels. IEEE Trans. Inf. Theor. 48(7), 2086–2091 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Neuschel T.: Plancherel–Rotach formulae for average characteristic polynomials of products of Ginibre random matrices and the Fuss–Catalan distribution. Random Matrices Theory Appl. 3, 1450003 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  44. Olver, F.W.L et al. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

  45. Osborn J.C.: Universal results from an alternate random matrix model for QCD with a baryon chemical potential. Phys. Rev. Lett. 93, 222001 (2004)

    Article  ADS  Google Scholar 

  46. Penson K.A., Zyczkowski K.: Product of Ginibre matrices: Fuss–Catalan and Raney distributions. Phys. Rev. E 83, 061118 (2011)

    Article  ADS  Google Scholar 

  47. O’Rourke S., Soshnikov A.: Products of independent non-Hermitian random matrices. Electron. J. Probab. 16(81), 2219–2245 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Strahov E.: Differential equations for singular values of products of Ginibre random matrices. J. Phys. A 47(32), 325203 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  49. Temme N.: Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153, 441–462 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Verbaarschot J.J.M., Wettig T.: Random matrix theory and chiral symmetry in QCD. Ann. Rev. Nucl. Part Sci. 50, 343–410 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Akemann.

Additional information

Communicated by P. Deift

G. Akemann is supported partly by Investissements d’Avenir du LabEx PALM (ANR-10-LABX-0039-PALM) and by the SFB|TR12 “Symmetries and Universality in Mesoscopic Systems” of the German research council DFG. E. Strahov is supported in part by the Hebrew University Grant “Non-hermitian random matrices” No. 0337592.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akemann, G., Strahov, E. Dropping the Independence: Singular Values for Products of Two Coupled Random Matrices. Commun. Math. Phys. 345, 101–140 (2016). https://doi.org/10.1007/s00220-016-2653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2653-4

Navigation