Skip to main content
Log in

Elliptic Genus of Phases of N = 2 Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss an algebro-geometric description of Witten’s phases of N = 2 theories and propose a definition of their elliptic genus provided some conditions on singularities of the phases are met. For Landau–Ginzburg phase one recovers elliptic genus of LG models proposed in physics literature in early 1990s. For certain transitions between phases we derive invariance of elliptic genus from an equivariant form of McKay correspondence for elliptic genus. As special cases one obtains Landau–Giznburg/Calabi–Yau correspondence for elliptic genus of weighted homogeneous potentials as well as certain hybrid/CY correspondences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharony O., Di Francesco P., Yankielowicz S.: Elliptic genera and the Landau–Ginzburg approach to N = 2 orbifolds. Nucl. Phys. B 411(2-3), 584–608 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ando M., Sharpe E.: Elliptic genera of Landau–Ginzburg models over nontrivial spaces. Adv. Theor. Math. Phys. 16(4), 1087–1144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benini F., Eager R., Hori K., Tachikawa Y.: Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups. Lett. Math. Phys. 104(4), 465–493 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Benini F., Eager R., Hori K., Tachikawa Y.: Elliptic genera of 2d N = 2 gauge theories. Commun. Math. Phys. 333(3), 1241–1286 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Borel A., Hirzebruch F.: Characteristic classes and homogeneous spaces. I. Am. J. Math. 80, 458–538 (1958)

    Article  MathSciNet  Google Scholar 

  6. Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories. arXiv:1203.6643

  7. Berglund P., Hübsch T.: A generalized construction of mirror manifolds. Nucl. Phys. B 393(1-2), 377–391 (1993)

    Article  ADS  MATH  Google Scholar 

  8. Berglund P., Henningson M.: Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus. Nucl. Phys. B 433(2), 311–332 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Borisov L., aufmann R.: On CY–LG correspondence for (0,2) toric models. Adv. Math. 230(2), 531–551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borisov L.: Berglund–Hbsch mirror symmetry via vertex algebras. commun. Math. phys. 320(1), 73–99 (2013)

    Article  ADS  MATH  Google Scholar 

  11. Borisov L., Libgober A.: Elliptic genera of toric varieties and applications to mirror symmetry. Invent. Math. 140(2), 453–485 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Borisov L., Libgober A.: Elliptic genera of singular varieties. Duke Math. J. 116(2), 319–351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borisov L., Libgober A.: McKay correspondence for elliptic genera. Ann. Math. (2) 161(3), 1521–1569 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandrasekharan K.: Elliptic Functions. Grundlehren der Mathematischen Wissenschaften 281. Springer, Berlin (1985)

    Google Scholar 

  15. Chiodo A., Ruan Y.: LG/CY correspondence: the state space isomorphism (English summary). Adv. Math. 227(6), 2157–2188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiodo A., Iritani H., Ruan Y.: Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence. Publ. Math. Inst. Hautes tudes Sci. 119, 127–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cox, D.: Recent developments in toric geometry. Algebraic Geometry, Santa Cruz, 1995, 389–436, Proc. Sympos. Pure Math. vol. 62, Part 2, American Mathematical Society, Providence, RI, (1997)

  18. Cox, D., Little, J., Schenck, H.: Toric varieties. Graduate studies in mathematics, vol. 124, American Mathematical Society, Providence, RI, (2011)

  19. Dolgachev I., Hu Y.: Variation of geometric invariant theory quotients. With an appendix by Nicolas Ressayre. Inst. Hautes tudes Sci. Publ. Math. No. 87, 5–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolgachev I.: Lectures on Invariant Theory. London Mathematical Society Lecture Note Series 296. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  21. Ebeling W., Takahashi A.: Variance of the exponents of orbifold Landau–Ginzburg models. Math. Res. Lett. 20(1), 51–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Edidin D., Graham W.: Riemann–Roch for equivariant Chow groups. Duke Math. J. 102(3), 567–594 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gadde A., Gukov S.: 2d index and surface operators. J. High Energy Phys. 3, 080 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  24. Geraschenko A., Satriano M.: Torus Quotients as Global Quotients by Finite Groups. arXiv:1201.4807.

  25. Gorbounov V., Malikov F.: Vertex algebras and the Landau–Ginzburg/Calabi–Yau correspondence. Mosc. Math. J. 4(3), 729–779 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Gorbounov V., Ochanine S.: Mirror symmetry formulae for the elliptic genus of complete intersections. J. Topol 1(2), 429–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Halpern-Leistner, D.: Geometric invariant theory and derived categories of coherent sheaves. ThesisUniversity of California, Berkeley, (2013)

  28. Katzarkov, L., Przyjalkowski, V.: Landau-Ginzburg models–old and new. In: Proceedings of the 18th Gökova geometry-topology conference 2011, Gökova, Turkey, pp. 97–124. International Press, Cambridge, MA (2014). arXiv:1405.2953

  29. Katzarkov, L., Kontsevich, M., Pantev, T.: Tian–Todorov theorems for Landau–Ginzburg models. arXiv:1409.5996

  30. Kawai T., Yamada Y., Sung-Kil Yang: Elliptic genera and N = 2 superconformal field theory. Nucl. Phys. B 414(1-2), 191–212 (1994)

    Article  ADS  MATH  Google Scholar 

  31. Kirwan F.: Partial desingularisations of quotients of nonsingular varieties and their Betti numbers. Ann. Math. (2) 122(1), 41–85 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Knop, F., Kraft, H., Vust, T.: The Picard Group of a G-variety. In: Kraft, H., Slodowy, P., Springer T.A. (eds.) Algebraische Transformationsgruppen und Invariantentheorie Algebraic Transformation Groups and Invariant Theory. DMV Seminar, vol. 13, pp. 77–87. Birkhäuser, Basel (1989)

  33. Krawitz, M.: FJRW rings and Landau–Ginzburg mirror symmetry. Thesis. University of Michigan. (2010)

  34. Landweber, P.S.: Elliptic curves modular forms in algebraic topology. In: Proceedings of a conference held in Princeton, New Jersey, September 15–17, 1986. Lecture Notes in Mathematics, 1326. Springer, Berlin (1988)

  35. Losik, M., Michor, P.W., Popov, V.L.: Invariant tensor fields and orbit varieties for finite algebraic transformation groups. A tribute to C. S. Seshadri, Perspectives in Geometry and Representation Theory, Trends in Mathematics, pp. 346–378. Birkhäuser, Basel (2003)

  36. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, vol. 34, 3rd edn. Springer, Berlin (1994)

  37. Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities. In: Tschinkel, Y., Zarhin, Y. (eds.) Algebra, arithmetic, and geometry. Progress in Mathematics, vol. 270, pp. 503–531. Birkhäuser, Boston (2009)

  38. Steenbrink, J.: Mixed Hodge structure on the vanishing cohomology. Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)

  39. Thaddeus , Thaddeus : Geometric invariant theory and flips. J. Am. Math. Soc. 9(3), 691–723 (1996)

    Article  MATH  Google Scholar 

  40. Waelder R.: Equivariant elliptic genera and local McKay correspondences. Asian J. Math. 12(2), 251–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Witten, E.: On the Landau-Ginzburg description of N = 2 minimal models. Int. J. Mod. Phys. A 9, 4783–4800 (1994). doi:10.1142/S0217751X9400193X

  42. Witten, E.: Phases of N = 2 theories in two dimensions. Mirror symmetry, II, 143-211, AMS/IP Stud. Adv. Math., 1, Am. Math. Soc., Providence, RI, (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Libgober.

Additional information

Communicated by H. Ooguri

Author supported by a grant from Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libgober, A. Elliptic Genus of Phases of N = 2 Theories. Commun. Math. Phys. 340, 939–958 (2015). https://doi.org/10.1007/s00220-015-2465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2465-y

Keywords

Navigation