Skip to main content
Log in

Elliptic Genera of Two-Dimensional \({\mathcal{N} = 2}\) Gauge Theories with Rank-One Gauge Groups

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We compute the elliptic genera of two-dimensional \({\mathcal{N} = (2, 2)}\) and \({\mathcal{N} = (0, 2)}\) -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi–Yau, \({\mathcal{N} = (2, 2)}\) SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric \({\mathcal{N} = (0, 2)}\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schellekens A., Warner N.: Anomaly cancellation and selfdual lattices. Phys. Lett. B181, 339 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. Schellekens A., Warner N.: Anomalies and modular invariance in string theory. Phys. Lett. B177, 317 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pilch K., Schellekens A., Warner N.: Path integral calculation of string anomalies. Nucl. Phys. B287, 362 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Witten E.: Elliptic genera and quantum field theory. Commun. Math. Phys. 109, 525 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Witten, E.: The index of the Dirac operator in loop space. In: Landweber, P.S. (ed) Elliptic curves and modular forms in algebraic topology. Lecture Notes in Mathematics, vol. 1326, pp. 161–181. Springer, Berlin (1988)

  6. Eguchi T., Ooguri H., Taormina A., Yang S.-K.: Superconformal algebras and string compactification on manifolds with SU(N) holonomy. Nucl. Phys. B315, 193 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ooguri H.: Superconformal symmetry and geometry of Ricci flat Kähler manifolds. Int. J. Mod. Phys. A4, 4303–4324 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Witten, E.: On the Landau–Ginzburg description of \({\mathcal{N} = 2}\) minimal models. Int. J. Mod. Phys. A9, 4783–4800 (1994). arXiv:hep-th/9304026 [hep-th]

  9. Berglund, P., Henningson, M.: Landau–Ginzburg orbifolds, mirror symmetry and the elliptic genus. Nucl. Phys. B433, 311–332 (1995). arXiv:hep-th/9401029 [hep-th]

  10. Kawai, T., Yamada, Y., Yang, S.-K.: Elliptic genera and \({\mathcal{N} = 2}\) superconformal field theory. Nucl. Phys. B414, 191–212 (1994). arXiv:hep-th/9306096 [hep-th]

  11. Kawai, T., Yang, S.-K.: Duality of orbifoldized elliptic genera. Prog. Theor. Phys. Suppl. 118, 277–298 (1995). arXiv:hep-th/9408121 [hep-th]

    Google Scholar 

  12. Berglund, P., Henningson, M.: On the elliptic genus and mirror symmetry. In: Greene, B., Yau, S. (eds.) Mirror Symmetry II, pp. 115–127. AMS, New York (1994). arXiv:hep-th/9406045 [hep-th]

  13. Eguchi, T., Jinzenji, M.: Generalization of Calabi–Yau/Landau-Ginzburg correspondence. JHEP 0002, 028 (2000). arXiv:hep-th/9911220 [hep-th]

  14. Ando, M., Sharpe, E.: Elliptic genera of Landau–Ginzburg models over nontrivial spaces. Adv. Theor. Math. Phys. 16, 1087–1144 (2012). arXiv:0905.1285 [hep-th]

    Google Scholar 

  15. Ma, X., Zhou, J.: Elliptic genera of complete intersections. Int. J. Math. 16(10), 1131–1155 (2005). arXiv:math/0411081 [math.AG]

    Google Scholar 

  16. Guo, S., Zhou, J.: Elliptic genera of complete intersections in weighted projective spaces. Int. J. Math. 22(5), 695–712 (2011)

    Google Scholar 

  17. Nekrasov, N.: Four Dimensional Holomorphic Theories. PhD thesis, Princeton University (1996)

  18. Losev, A., Nekrasov, N., Shatashvili, S.L.: Issues in topological gauge theory. Nucl.Phys. B534, 549–611 (1998). arXiv:hep-th/9711108 [hep-th]

  19. Costello, K.: Supersymmetric gauge theory and the Yangian. arXiv:1303.2632 [hep-th]

  20. Grassi, P.A., Policastro, G., Scheidegger, E.: Partition functions, localization, and the chiral De Rham complex. arXiv:hep-th/0702044 [hep-th]

  21. Benini, F., Bobev, N.: Exact two-dimensional superconformal R-symmetry and c-extremization. Phys. Rev. Lett. 110, 061601 (2013). arXiv:1211.4030 [hep-th]

    Google Scholar 

  22. Benini, F., Bobev, N.: Two-dimensional SCFTs from wrapped branes and c-extremization. JHEP 1306, 005 (2013). arXiv:1302.4451 [hep-th]

  23. Kawai, T., Mohri, K.: Geometry of (0,2) Landau–Ginzburg orbifolds. Nucl. Phys. B425, 191–216 (1994). arXiv:hep-th/9402148 [hep-th]

  24. Hori, K., Tong, D.: Aspects of non-Abelian gauge dynamics in two-dimensional \({\mathcal{N} = (2, 2)}\) theories. JHEP 0705, 079 (2007). arXiv:hep-th/0609032 [hep-th]

  25. Witten E.: Constraints on supersymmetry breaking. Nucl. Phys. B202, 253 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dixon L.J., Ginsparg P.H., Harvey J.A.: (Central charge c) = 1 superconformal field theory. Nucl. Phys. B306, 470–496 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  27. Intriligator K.A., Vafa C.: Landau-Ginzburg orbifolds. Nucl. Phys. B339, 95–120 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hori, K.: Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories. JHEP 1310, 121 (2013). arXiv:1104.2853 [hep-th]

  29. Distler, J., Kachru, S.: (0,2) Landau–Ginzburg theory. Nucl. Phys. B413, 213–243 (1994). arXiv:hep-th/9309110 [hep-th]

  30. Hirzebruch, F., Berger, T., Jung, R.: Manifolds and modular forms. Aspects of Mathematics, E20. Friedr. Vieweg & Sohn, Braunschweig, With appendices by Nils-Peter Skoruppa and by Paul Baum, translated by Peter S. Landweber (1992)

  31. Jeffrey, L.C., Kirwan, F.C.: Localization for nonabelian group actions. Topology 34(2), 291–327 (1995). arXiv:alg-geom/9307001

    Google Scholar 

  32. Martens, J.: Equivariant volumes of non-compact quotients and instanton counting. Commun. Math. Phys. 281(3), 827–857 (2008). arXiv:math/0609841 [math.SG]

    Google Scholar 

  33. Witten, E.: Two-dimensional gauge theories revisited. J. Geom. Phys. 9, 303–368 (1992). arXiv:hep-th/9204083 [hep-th]

    Google Scholar 

  34. Szenes, A., Vergne, M.: Toric reduction and a conjecture of batyrev and materov. Invent. Math. 158(3), 453–495 (2004). arXiv:math/0306311 [math.AT]

    Google Scholar 

  35. Benini, F., Cremonesi, S.: Partition functions of \({\mathcal{N} = (2, 2)}\) gauge theories on S2 and vortices. arXiv:1206.2356 [hep-th]

  36. Witten, E.: Phases of \({\mathcal{N} = 2}\) theories in two-dimensions. Nucl. Phys. B403, 159–222 (1993). arXiv:hep-th/9301042 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Benini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benini, F., Eager, R., Hori, K. et al. Elliptic Genera of Two-Dimensional \({\mathcal{N} = 2}\) Gauge Theories with Rank-One Gauge Groups. Lett Math Phys 104, 465–493 (2014). https://doi.org/10.1007/s11005-013-0673-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-013-0673-y

Mathematics Subject Classification

Keywords

Navigation