Skip to main content
Log in

Exponential Decay of Correlations Implies Area Law

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that a finite correlation length, i.e., exponential decay of correlations, implies an area law for the entanglement entropy of quantum states defined on a line. The entropy bound is exponential in the correlation length of the state, thus reproducing as a particular case Hastings’s proof of an area law for groundstates of 1D gapped Hamiltonians.

As a consequence, we show that 1D quantum states with exponential decay of correlations have an efficient classical approximate description as a matrix product state of polynomial bond dimension, thus giving an equivalence between injective matrix product states and states with a finite correlation length.

The result can be seen as a rigorous justification, in one dimension, of the intuition that states with exponential decay of correlations, usually associated with non-critical phases of matter, are simple to describe. It also has implications for quantum computing: it shows that unless a pure state quantum computation involves states with long-range correlations, decaying at most algebraically with the distance, it can be efficiently simulated classically.

The proof relies on several previous tools from quantum information theory—including entanglement distillation protocols achieving the hashing bound, properties of single-shot smooth entropies, and the quantum substate theorem—and also on some newly developed ones. In particular we derive a new bound on correlations established by local random measurements, and we give a generalization to the max-entropy of a result of Hastings concerning the saturation of mutual information in multiparticle systems. The proof can also be interpreted as providing a limitation on the phenomenon of data hiding in quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H., Hepp K., Ruelle D.: Asymptotic behaviour of Wightman functions. Helv. Phys. Acta 35, 164 (1962)

    MATH  MathSciNet  Google Scholar 

  2. Fredenhagen K.: A remark on the cluster theorem. Commun. Math. Phys. 97, 461 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Nachtergaele B., Sims R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Hastings M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  5. Hastings M.B.: Locality in quantum and markov dynamics on lattices and networks. Phys. Rev. Lett. 93, 140402 (2004)

    Article  ADS  Google Scholar 

  6. M.B. Hastings: Decay of correlations in fermi systems at non-zero temperature. Phys. Rev. Lett. 93, 126402 (2004)

    Article  ADS  Google Scholar 

  7. Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Aharonov D., Arad I., Landau Z., Vazirani U.: The detectability lemma and its applications to quantum Hamiltonian complexity. New J. Phys. 13, 113043 (2011)

    Article  ADS  Google Scholar 

  9. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Eisert J., Cramer M., Plenio M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  12. Bekenstein J.D.: Black holes and entropy. Phys. Rev. D 7, 233 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  13. Vidal G., Latorre J.I., Rico E., Kitaev A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  14. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory, J. Stat. Mech. P06002 (2004)

  15. Audenaert K., Eisert J., Plenio M.B., Werner R.F.: Entanglement properties of the harmonic chain. Phys. Rev. A 66, 042327 (2002)

    Article  ADS  Google Scholar 

  16. Plenio M.B., Eisert J., Dreissig J., Cramer M.: Entropy, entanglement, and area: analytical results for harmonic lattice systems. Phys. Rev. Lett. 94, 060503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wolf M.M.: Violation of the entropic area law for Fermions. Phys. Rev. Lett. 96, 010404 (2006)

    Article  ADS  Google Scholar 

  18. Aharonov D., Gottesman D., Irani S., Kempe J.: The power of quantum systems on a line. Commun. Math. Phys. 287, 41 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Irani S.: Ground state entanglement in one dimensional translationally invariant quantum systems. J. Math. Phys. 51, 022101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gottesman, D., Irani, S.: The quantum and classical complexity of translationally invariant tiling and hamiltonian problems. FOCS ’ 09

  21. Hastings, M.: An area law for one dimensional quantum systems. JSTAT, P08024 (2007)

  22. Lieb E.H., Robinson D.W.: The nite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  23. Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: In preparation, (2012)

  24. Arad I., Landau Z., Vazirani U.: An improved 1D area law for frustration-free systems. Phys. Rev. B 85, 195145 (2012)

    Article  ADS  Google Scholar 

  25. Gottesman D., Hastings M.B.: Entanglement vs. gap for one-dimensional spin systems. New J. Phys. 12, 025002 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. Verstraete F., Cirac J.I.: Matrix product states represent ground states faithfully. Phys. Rev. B 73, 094423 (2006)

    Article  ADS  Google Scholar 

  27. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. DiVincenzo D.P., Leung D.W., Terhal B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48, 580 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Brandão, F.G.S.L., Christandl, M., Yard, J.: A quasipolynomial-time algorithm for the quantum separability problem. In: Proceedings of ACM symposium on theory of computation (STOC’11)

  30. Brandão F.G.S.L., Christandl M., Yard J.: Faithful squashed entanglement. Commun. Math. Phys. 306, 805 (2011)

    Article  ADS  MATH  Google Scholar 

  31. Hastings M.B.: Random unitaries give quantum expanders. Phys. Rev. A 76, 032315 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Hastings M.B.: Entropy and entanglement in quantum ground states. Phys. Rev. B 76, 035114 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wolf M.M., Verstraete F., Hastings M.B., Cirac J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Masanes L.l.: An area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009)

    Article  ADS  Google Scholar 

  35. Osborne T.: Hamiltonian complexity. Rep. Prog. Phys. 75, 022001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. Brandão F.G.S.L., Horodecki M: Entanglement area law from exponential decay of correlations. Nat. Phys. 9, 721–726 (2013)

    Article  Google Scholar 

  37. Tomamichel M., Colbeck R., Renner R.: Duality between smooth min- and max-entropies. IEEE Trans. Inf. Theory 56, 4674 (2010)

    Article  MathSciNet  Google Scholar 

  38. Renner, R.: Ph.D. thesis ETH Zurich (2005)

  39. Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Ostlund, Y.S., Rommer, S.: Phys. Rev. Lett. 75, 3537 (1995)

  41. Vidal G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  42. Perez-Garcia D., Verstraete F., Wolf M.M., Cirac J.I.: Matrix product state representations. Q. Inf. Comp. 7, 401 (2007)

    MATH  MathSciNet  Google Scholar 

  43. White S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  44. Abeyesinghe A., Devetak I., Hayden P., Winter A.: The mother of all protocols: restructuring quantum information’s family tree. J. Proc. R. Soc. A 465, 2537 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Ben-Aroya A., Ta-Shma A.: Quantum expanders: motivation and construction. Theory Comput. 6, 47 (2010)

    Article  MathSciNet  Google Scholar 

  46. Gottesman, D.: The Heisenberg representation of quantum computers. arXiv:quant-ph/9807006 (1998)

  47. Jozsa R., Linden N.: On the role of entanglement in quantum computational speed-up. Proc. R. Soc. Lond. A 459(2036), 2011–2032 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Valiant L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31(4), 1229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. DiVincenzo D., Terhal B.: Classical simulation of noninteracting-fermion quantum circuits. Phys. Rev. A 65, 032325 (2002)

    Article  ADS  Google Scholar 

  50. Markov I., Shi Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comp. 38, 963 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Vanden Nest M.: Simulating quantum computers with probabilistic methods. Quant. Inf. Comp. 11, 784 (2011)

    MathSciNet  Google Scholar 

  52. Arad I., Landau Z.: Quantum computation and the evaluation of tensor networks. Siam J. Comput. 39(7), 3089–3121 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  53. Hastings, M.B.: Notes on some questions in mathematical physics and quantum information. arXiv:1404.4327

  54. Devetak I., Devetak I., Devetak I.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Horodecki M., Oppenheim J., Winter A.: Partial quantum information. Nature 436, 673 (2005)

    Article  ADS  Google Scholar 

  56. Horodecki M., Oppenheim J., Winter A.: Quantum state merging and negative information. Commun. Math. Phys. 269, 107 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Araki H., Lieb E.H. (1970) Entropy inequalities. Commun. Math. Phys. 18:160

  58. Dupuis F., Berta M., Wullschleger J., Renner R.: One-shot decoupling. Commun. Math. Phys. 328, 251–284 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Datta N., Hsieh M.-H.: The apex of the family tree of protocols: optimal rates and resource inequalities. New J. Phys. 13, 093042 (2011)

    Article  ADS  Google Scholar 

  60. Berta M., Christandl M., Renner R.: The quantum reverse shannon theorem based on one-shot information theory. Commun. Math. Phys. 306, 579 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Jain, R., Radhakrishnan, J., Sen, P.: A theorem about relative entropy of quantum states with an application to privacy in quantum communication. arXiv:0705.2437

  62. Jain, R., Nayak A.: Short proofs of the quantum substate theorem. IEEE Trans. Inf. Theory 58, no.6 (2012)

  63. Tomamichel M., Colbeck R., Renner R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55, 5840 (2009)

    Article  MathSciNet  Google Scholar 

  64. Tomamichel, M.: A framework for non-asymptotic quantum information theory. PhD Thesis, ETH Zürich 2011. arXiv:1203.2142

  65. Ledoux, M.: The concentration of measure phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society (2001)

  66. Fannes, M.: Commun. Math. Phys. 31, 291 (1973)

  67. Audenaert K.M.R.: A sharp fannes-type inequality for the von neumann entropy. J. Phys. A 40, 8127 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Datta N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816 (2009)

    Article  Google Scholar 

  69. Berta, M., Furrer, F., Scholz, V.B.: The smooth entropy formalism on von neumann algebras. arXiv:1107.5460

  70. Bennett C.H., Devetak I, Harrow A.W., Shor P.W., Winter A.: Quantum reverse shannon theorem. IEEE Trans. Inf. Theory 60(5), 2926–2959 (2014)

    Article  MathSciNet  Google Scholar 

  71. Hayden P., Horodecki M., Yard J., Winter A.: A decoupling approach to the quantum capacity. Open Syst. Inf. Dyn. 15, 7 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  72. del Rio L., Aberg J., Renner R., Dahlsten O., Vedral V.: The thermodynamic meaning of negative entropy. Nature 474, 61 (2011)

    Article  Google Scholar 

  73. Horodecki M., Oppenheim J.: Fundamental limitations for quantum and nano thermodynamics. Nat. Commun. 4, 2059 (2013)

    Article  ADS  Google Scholar 

  74. Aharonov D., Arad I., Irani S.: An efficient algorithm for approximating 1d ground states. Phys. Rev. A 82, 012315 (2010)

    Article  ADS  Google Scholar 

  75. Schuch N., Cirac J.I.: Matrix product state and mean field solutions for one-dimensional systems can be found efficiently. Phys. Rev. A 82, 012314 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  76. Renner, R., Wolf, S.: Smooth renyi entropy and applications. In: Proceedings international symposium on information theory, ISIT 2004 (2004)

  77. Brandão F.G.S.L., Horodecki M.: On Hastings’ counterexamples to the minimum output entropy additivity conjecture. Open Syst. Inf. Dyn. 17, 31 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  78. Hastings, M.B.: Private communication (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando G. S. L. Brandão.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandão, F.G.S.L., Horodecki, M. Exponential Decay of Correlations Implies Area Law. Commun. Math. Phys. 333, 761–798 (2015). https://doi.org/10.1007/s00220-014-2213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2213-8

Keywords

Navigation