Skip to main content
Log in

The Power of Quantum Systems on a Line

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the computational strength of quantum particles (each of finite dimensionality) arranged on a line. First, we prove that it is possible to perform universal adiabatic quantum computation using a one-dimensional quantum system (with 9 states per particle). This might have practical implications for experimentalists interested in constructing an adiabatic quantum computer. Building on the same construction, but with some additional technical effort and 12 states per particle, we show that the problem of approximating the ground state energy of a system composed of a line of quantum particles is QMA-complete; QMA is a quantum analogue of NP. This is in striking contrast to the fact that the analogous classical problem, namely, one-dimensional MAX-2-SAT with nearest neighbor constraints, is in P. The proof of the QMA-completeness result requires an additional idea beyond the usual techniques in the area: Not all illegal configurations can be ruled out by local checks, so instead we rule out such illegal configurations because they would, in the future, evolve into a state which can be seen locally to be illegal. Our construction implies (assuming the quantum Church-Turing thesis and that quantum computers cannot efficiently solve QMA-complete problems) that there are one-dimensional systems which take an exponential time to relax to their ground states at any temperature, making them candidates for being one-dimensional spin glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apolloni B., Carvalho C., de Falco D.: Quantum stochastic optimization. Stochastic Processes and their Applications 33(5), 233–244 (1988)

    MathSciNet  Google Scholar 

  2. Apolloni, B., Cesa-Bianchi, N., de Falco, D.: A numerical implementation of “quantum annealing”. In: Stochastic Processes, Physics and Geometry: Proceedings of the Ascona-Locarno Conference. River Edge, NJ: World Scientific. 1990, pp. 97–111

  3. Aharonov, D., Gottesman, D., Irani, S., Kempe, J.: The power of quantum systems on a line. In: FOCS. Proc. 48 th Ann. IEEE, Symp on Foundations of Computer Science, Los Alamitos, CA: IEEE Comp. Soc., 2007, pp. 373–383

  4. Aharonov, D., Gottesman, D., Kempe, J.: The power of quantum systems on a line. http://arXiv.org/abs/0705.4077v2 [quant-ph], 2007

  5. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proc. 45th FOCS, Los Alamitos, CA: IEEE Comp. Soc., 2004, pp. 42–51

  6. Barahona F.: On the computational complexity of Ising spin glass models. J. Phys. A: Math. Gen. 15, 3241–3253 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Binder K., Young A.P.: Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)

    Article  ADS  Google Scholar 

  8. Childs A., Farhi E., Preskill J.: Robustness of adiabatic quantum computation. Phys. Rev. A 65, 012322 (2002)

    Article  ADS  Google Scholar 

  9. Deift P., Ruskai M.B., Spitzer W.: Improved gap estimates for simulating quantum circuits by adiabatic evolution. Quant Infor. Proc. 6(2), 121–125 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feynman R.: Quantum mechanical computers. Optics News 11, 11–21 (1985)

    Article  Google Scholar 

  11. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–476 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. http://arXiv.org/list/quant-ph/0001106, 2000

  13. Fisher D.S.: Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B 51(10), 6411–6461 (1995)

    Article  ADS  Google Scholar 

  14. Hastings, M.: Personal communication

  15. Hastings, M.: An area law for one dimensional quantum systems. JSTAT. P08024 (2007)

  16. Hastings, M., Terhal, B.: Personal communication

  17. Irani, S.: The complexity of quantum systems on a one-dimensional chain. http://arXiv.org/abs/0705.4067v2[quant-ph], 2007

  18. Jordan S.P., Farhi E., Shor P.W.: Error-correcting codes for adiabatic quantum computation. Phys. Rev. A 74, 052322 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Janzing, D., Wocjan, P., Zhang, S.: A single-shot measurement of the energy of product states in a translation invariant spin chain can replace any quantum computation. http://arXiv.org/abs/0710.1615v2[quant-ph], 2007

  20. Kay A.: The computational power of symmetric hamiltonians. Phys. Rev. A. 78, 012346 (2008)

    Article  ADS  Google Scholar 

  21. Kempe J., Kitaev A., Regev O.: The complexity of the Local Hamiltonian problem. SIAM J. Comp. 35(5), 1070–1097 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Providence, RI: Amer. Math. Soc., 2002

  23. Nagaj, D.: Local Hamiltonians in Quantum Computation. PhD thesis, MIT. http://arXiv.org/abs/0808.2117v1[quant-ph], 2008

  24. Nagaj D., Wocjan P.: Hamiltonian quantum cellular automata in 1d. Phys. Rev. A 78, 032311 (2008)

    Article  ADS  Google Scholar 

  25. Osborne T.: Efficient approximation of the dynamics of one-dimensional quantum spin systems. Phys. Rev. Lett. 97, 157202 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Osborne T.: Ground state of a class of noncritical one-dimensional quantum spin systems can be approximated efficiently. Phys. Rev. A 75, 042306 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Oliveira R., Terhal B.: The complexity of quantum spin systems on a two-dimensional square lattice. Quant. Inf. Comp. 8(10), 0900–0924 (2008)

    MathSciNet  Google Scholar 

  28. Schollwöck U.: The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–316 (2005)

    Article  ADS  Google Scholar 

  29. Shepherd D.J., Franz T., Werner R.F.: Universally programmable quantum cellular automaton. Phys. Rev. Lett. 97, 020502 (2006)

    Article  ADS  Google Scholar 

  30. Suzuki M.: Relationship between d-dimensional quantal spin systems and (d+1)-dimensional ising systems. Prog. Theor. Phys. 56(5), 1454–1469 (1976)

    Article  MATH  ADS  Google Scholar 

  31. van Emde Boas, P.: Handbook of Theoretical Computer Science. volume A, Chapter 1. Cambridge, MA: MIT Press, 1990, pp. 1–66

  32. Valiant L.G., Vazirani V.V.: NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47(3), 85–93 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Watrous, J.: On one-dimensional quantum cellular automata. In: Proc. 36th Annual IEEE Symp. on Foundations of Computer Science (FOCS), Los Alamitos, CA: IEEE Comp. Sci, 1995, pp. 528–537

  34. White S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  35. White S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gottesman.

Additional information

Communicated by M. B. Ruskai

Supported by Israel Science Foundation grant number 039-7549, Binational Science Foundation grant number 037-8404, and US Army Research Office grant number 030-7790.

Supported by CIFAR, by the Government of Canada through NSERC, and by the Province of Ontario through MRI.

Partially supported by NSF Grant CCR-0514082.

This work was mainly done while the author was at CNRS and LRI, University of Paris-Sud, Orsay, France. Partially supported by the European Commission under the Integrated Project Qubit Applications (QAP) funded by the IST directorate as Contract Number 015848, by an ANR AlgoQP grant of the French Research Ministry, by an Alon Fellowship of the Israeli Higher Council of Academic Research, by an Individual Research grant of the ISF, and by a European Research Council (ERC) Starting Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharonov, D., Gottesman, D., Irani, S. et al. The Power of Quantum Systems on a Line. Commun. Math. Phys. 287, 41–65 (2009). https://doi.org/10.1007/s00220-008-0710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0710-3

Keywords

Navigation